HOME
*



picture info

2–3–4 Tree
In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: * a 2-node has one data element, and if internal has two child nodes; * a 3-node has two data elements, and if internal has three child nodes; * a 4-node has three data elements, and if internal has four child nodes; Image:2-3-4-tree-2-node.svg, 2-node Image:2-3-4-tree-3-node.svg, 3-node Image:2-3-4-tree-4-node.svg, 4-node 2–3–4 trees are B-trees of order 4; like B-trees in general, they can search, insert and delete in O(log ''n'') time. One property of a 2–3–4 tree is that all external nodes are at the same depth. 2–3–4 trees are isomorphic to red–black trees, meaning that they are equivalent data structures. In other words, for every 2–3–4 tree, there exists at least one and at most one red–black ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (including the design and implementation of hardware and software). Computer science is generally considered an area of academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Red–black Tree
In computer science, a red–black tree is a kind of self-balancing binary search tree. Each node stores an extra bit representing "color" ("red" or "black"), used to ensure that the tree remains balanced during insertions and deletions. When the tree is modified, the new tree is rearranged and "repainted" to restore the coloring properties that constrain how unbalanced the tree can become in the worst case. The properties are designed such that this rearranging and recoloring can be performed efficiently. The re-balancing is not perfect, but guarantees searching in O(\log n) time, where n is the number of entries. The insert and delete operations, along with the tree rearrangement and recoloring, are also performed in O(\log n) time. Tracking the color of each node requires only one bit of information per node because there are only two colors. The tree does not contain any other data specific to it being a red–black tree, so its memory footprint is almost identical to that of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Queap
In computer science, a queap is a priority queue data structure. The data structure allows insertions and deletions of arbitrary elements, as well as retrieval of the highest-priority element. Each deletion takes amortized time logarithmic in the number of items that have been in the structure for a longer time than the removed item. Insertions take constant amortized time. The data structure consists of a doubly linked list and a 2–4 tree data structure, each modified to keep track of its minimum-priority element. The basic operation of the structure is to keep newly inserted elements in the doubly linked list, until a deletion would remove one of the list items, at which point they are all moved into the 2–4 tree. The 2–4 tree stores its elements in insertion order, rather than the more conventional priority-sorted order. Both the data structure and its name were devised by John Iacono and Stefan Langerman. Description A queap is a priority queue that inserts element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

2–3 Tree
In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-nodes) and two data elements. A 2–3 tree is a B-tree of order 3. Nodes on the outside of the tree (leaf nodes) have no children and one or two data elements. 2–3 trees were invented by John Hopcroft in 1970. 2–3 trees are required to be balanced, meaning that each leaf is at the same level. It follows that each right, center, and left subtree of a node contains the same or close to the same amount of data. Definitions We say that an internal node is a 2-node if it has ''one'' data element and ''two'' children. We say that an internal node is a 3-node if it has ''two'' data elements and ''three'' children. A 4-node, with three data elements, may be temporarily created during manipulation of the tree but is never persistently stored in the tree. Image:2-3-4 tree 2-node.svg, 2 node Image:2-3-4-t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Red–black Tree
In computer science, a red–black tree is a kind of self-balancing binary search tree. Each node stores an extra bit representing "color" ("red" or "black"), used to ensure that the tree remains balanced during insertions and deletions. When the tree is modified, the new tree is rearranged and "repainted" to restore the coloring properties that constrain how unbalanced the tree can become in the worst case. The properties are designed such that this rearranging and recoloring can be performed efficiently. The re-balancing is not perfect, but guarantees searching in O(\log n) time, where n is the number of entries. The insert and delete operations, along with the tree rearrangement and recoloring, are also performed in O(\log n) time. Tracking the color of each node requires only one bit of information per node because there are only two colors. The tree does not contain any other data specific to it being a red–black tree, so its memory footprint is almost identical to that of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Wiley & Sons
John Wiley & Sons, Inc., commonly known as Wiley (), is an American multinational publishing company founded in 1807 that focuses on academic publishing and instructional materials. The company produces books, journals, and encyclopedias, in print and electronically, as well as online products and services, training materials, and educational materials for undergraduate, graduate, and continuing education students. History The company was established in 1807 when Charles Wiley opened a print shop in Manhattan. The company was the publisher of 19th century American literary figures like James Fenimore Cooper, Washington Irving, Herman Melville, and Edgar Allan Poe, as well as of legal, religious, and other non-fiction titles. The firm took its current name in 1865. Wiley later shifted its focus to scientific, technical, and engineering subject areas, abandoning its literary interests. Wiley's son John (born in Flatbush, New York, October 4, 1808; died in East Orange, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Red–black Tree
In computer science, a red–black tree is a kind of self-balancing binary search tree. Each node stores an extra bit representing "color" ("red" or "black"), used to ensure that the tree remains balanced during insertions and deletions. When the tree is modified, the new tree is rearranged and "repainted" to restore the coloring properties that constrain how unbalanced the tree can become in the worst case. The properties are designed such that this rearranging and recoloring can be performed efficiently. The re-balancing is not perfect, but guarantees searching in O(\log n) time, where n is the number of entries. The insert and delete operations, along with the tree rearrangement and recoloring, are also performed in O(\log n) time. Tracking the color of each node requires only one bit of information per node because there are only two colors. The tree does not contain any other data specific to it being a red–black tree, so its memory footprint is almost identical to that of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Structure
In computer science, a data structure is a data organization, management, and storage format that is usually chosen for Efficiency, efficient Data access, access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Usage Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type. Different types of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, Relational database, relational databases commonly use B-tree indexes for data retrieval, while compiler Implementation, implementations usually use hash tables to look up identifiers. Data structures provide a means to manage large amounts of data efficiently for uses such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]