2,5-DMPEA
   HOME





2,5-DMPEA
2C-H, also known as 2,5-dimethoxyphenethylamine (2,5-DMPEA), is a lesser-known drug of the phenethylamine and 2C (4-substituted 2,5-dimethoxyphenethylamine) families. It is the parent compound of the 2C drugs. Use and effects There is no record of 2C-H trials in humans, as it would likely be destroyed by monoamine oxidase enzymes before causing any significant psychoactive effects. In the book ''PiHKAL'', Alexander Shulgin lists both the dosage and duration of 2C-H effects as unknown. Very little data exists about the pharmacological properties, metabolism, and toxicity of 2C-H. Pharmacology 2C-H acts as a partial agonist of the serotonin 5-HT2A, 5-HT2B, and 5-HT2C receptors, albeit with far lower potency than other 2C drugs. It also shows affinity for the serotonin 5-HT1A receptor, higher than that of any other 2C drug. The drug exhibits agonist activity ''in vitro'' at the human trace amine associated receptor 1 (TAAR1). 2C-H produces visual and auditory changes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrochloride
In chemistry, a hydrochloride is an acid salt resulting, or regarded as resulting, from the reaction of hydrochloric acid with an organic base (e.g. an amine). An alternative name is chlorhydrate, which comes from French. An archaic alternative name is muriate, derived from hydrochloric acid's ancient name: muriatic acid. Uses Converting amines into their hydrochlorides is a common way to improve their water solubility, which can be desirable for substances used in medications. The European Pharmacopoeia lists more than 200 hydrochlorides as active ingredients in medications. These hydrochlorides, compared to free bases, may more readily dissolve in the gastrointestinal tract and be absorbed into the bloodstream more quickly. Additionally, many hydrochlorides of amines have a longer shelf-life than their respective free bases. Amine hydrochlorides represent latent forms of a more reactive free base. In this regard, formation of an amine hydrochloride confers protection ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


5-HT2B Receptor
5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the ''HTR2B'' gene. 5-HT2B is a member of the 5-HT2 receptor, 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, the 5-HT2B receptor is Gq protein, Gq/G11-protein coupled, leading to downstream activation of phospholipase C. Tissue distribution and function First discovered in the stomach of rats, 5-HT2B was challenging to characterize initially because of its structural similarity to the other 5-HT2 receptors, particularly 5-HT2C. The 5-HT2 receptors (of which the 5-HT2B receptor is a subtype) mediate many of the central and peripheral physiologic functions of serotonin. Cardiovascular effects include contraction of blood vessels and shape changes in platelets; central nervous system (CNS) effects include neuronal sensitization to tactile stimuli and mediation of some of the effects of halluci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beta-1 Adrenergic Receptor
The beta-1 adrenergic receptor (β1 adrenoceptor), also known as ADRB1, can refer to either the protein-encoding gene (gene ADRB1) or one of the four adrenergic receptors. It is a G-protein coupled receptor associated with the Gs heterotrimeric G-protein that is expressed predominantly in cardiac tissue. In addition to cardiac tissue, beta-1 adrenergic receptors are also expressed in the cerebral cortex. Historical Context W. B. Cannon postulated that there were two chemical transmitters or sympathins while studying the sympathetic nervous system in 1933. These E and I sympathins were involved with excitatory and inhibitory responses. In 1948, Raymond Ahlquist published a manuscript in the ''American Journal of Physiology'' establishing the idea of adrenaline having distinct actions on both alpha and beta receptors. Shortly afterward, Eli Lilly Laboratories synthesized the first beta-blocker, dichloroisoproterenol. General Information Structure ADRB-1 is a transmembra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha-2C Adrenergic Receptor
The alpha-2C adrenergic receptor (α2C adrenoceptor), also known as ADRA2C, is an alpha-2 adrenergic receptor, and also denotes the human gene encoding it. Receptor Alpha-2-adrenergic receptors include 3 highly homologous subtypes: alpha2A, alpha2B, and alpha2C. These receptors have a critical role in regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons in the central nervous system. Studies in mice revealed that both the alpha2A and alpha2C subtypes were required for normal presynaptic control of transmitter release from sympathetic nerves in the heart and from central noradrenergic neurons; the alpha2A subtype inhibited transmitter release at high stimulation frequencies, whereas the alpha2C subtype modulated neurotransmission at lower levels of nerve activity. Gene This gene encodes the alpha2C subtype, which contains no introns in either its coding or untranslated sequences. Ligands Agonists * (R)-3-Nitrobiphenyline (also we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alpha-2B Adrenergic Receptor
The alpha-2B adrenergic receptor (α2B adrenoceptor), is a G-protein coupled receptor. It is a subtype of the adrenergic receptor family. The human gene encoding this receptor has the symbol ADRA2B. ADRA2B orthologs have been identified in several mammals. Receptor α2-adrenergic receptors include 3 highly homologous subtypes: α2A, α2B, and α2C. These receptors have a critical role in regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons in the central nervous system. Clinical significance This gene encodes the α2B subtype, which was observed to associate with eIF-2B, a guanine nucleotide exchange protein that functions in regulation of translation. A polymorphic variant of the α2B subtype, which lacks 3 glutamic acids from a glutamic acid repeat element, was identified to have decreased G protein-coupled receptor kinase-mediated phosphorylation and desensitization; this polymorphic form is also associated with reduced basal metabo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha-2A Adrenergic Receptor
The alpha-2A adrenergic receptor (α2A adrenoceptor), also known as ADRA2A, is an α2-adrenergic receptor, and also denotes the human gene encoding it. Receptor α2-adrenergic receptors include 3 highly homologous subtypes: α2A, α2B, and α2C. These receptors have a critical role in regulating neurotransmitter release from sympathetic nerves and from adrenergic neurons in the central nervous system. Studies in mice revealed that both the α2A and α2C subtypes were required for normal presynaptic control of transmitter release from sympathetic nerves in the heart and from central noradrenergic neurons; the α2A subtype inhibited transmitter release at high stimulation frequencies, whereas the α2C subtype modulated neurotransmission at lower levels of nerve activity. Gene This gene encodes α2A subtype and it contains no introns in either its coding or untranslated sequences. Ligands Agonists * 4-NEMD * Brimonidine * Clonidine * Detomidine * Dexmedetomidine * Gu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha-1D Adrenergic Receptor
The alpha-1D adrenergic receptor (α1D adrenoreceptor), also known as ADRA1D, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. Receptor There are 3 alpha-1 adrenergic receptor subtypes: alpha-1A, -1B and -1D, all of which signal through the Gq/11 family of G-proteins and different subtypes show different patterns of activation. They activate mitogenic responses and regulate growth and proliferation of many cells. Gene This gene encodes alpha-1D-adrenergic receptor. Similar to alpha-1B-adrenergic receptor gene, this gene comprises 2 exons and a single intron that interrupts the coding region. Ligands Many α1 receptor ligands are non-selective for receptor subtypes. ; Antagonists * A-315456 * BMY 7378 (also α2C antagonist) * Domesticine * Cyclazosin (slight α1C selectivity) * Tamsulosin (roughly equal affinity for α1A) See also *Adrenergic receptor The adrenergic receptors or adrenoceptors are a class of G protein-coupled receptors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha-1B Adrenergic Receptor
The alpha-1B adrenergic receptor (α1B-adrenoreceptor), also known as ADRA1B, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. The crystal structure of the α1B-adrenergic receptor has been determined in complex with the inverse agonist (+)-cyclazosin. Receptor There are 3 alpha-1 adrenergic receptor subtypes: alpha-1A, -1B and -1D, all of which signal through the Gq/11 family of G-proteins and different subtypes show different patterns of activation. They activate mitogenic responses and regulate growth and proliferation of many cells. Gene This gene encodes alpha-1B-adrenergic receptor, which induces neoplastic transformation when transfected into NIH 3T3 fibroblasts and other cell lines. Thus, this normal cellular gene is identified as a protooncogene. This gene comprises 2 mRNA exon, exons and a single large intron of at least 20 kb that interrupts the coding region. Ligands ; Antagonists * L-765,314 * Risperidone * Brexpiprazole Interactions A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alpha-1A Adrenergic Receptor
The alpha-1A adrenergic receptor (α1A adrenoreceptor), also known as ADRA1A, formerly known also as the alpha-1C adrenergic receptor, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. There is no longer a subtype α1C receptor. At one time, there was a subtype known as α1C, but it was found to be identical to the previously discovered α1A receptor subtype. To avoid confusion, the naming convention was continued with the letter D. Receptor There are 3 alpha-1 adrenergic receptor subtypes: alpha-1A, -1B and -1D, all of which signal through the Gq/11 family of G-proteins. Different subtypes show different patterns of activation. The majority of alpha-1 receptors are directed toward the function of epinephrine, a hormone that has to do with the fight-or-flight response. Gene This gene encodes the alpha-1A-adrenergic receptor. Alternative splicing of this gene generates four transcript variants, which encode four different isoforms with distinct C-t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


5-HT7 Receptor
The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the ''HTR7'' gene, which in humans is transcribed into 3 different splice variants. Function When the 5-HT7 receptor is activated by serotonin, it sets off a cascade of events starting with release of the stimulatory G protein Gs from the GPCR complex. Gs in turn activates adenylate cyclase which increases intracellular levels of the second messenger cAMP. The 5-HT7 receptor plays a role in smooth muscle relaxation within the vasculature ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


5-HT6 Receptor
The 5HT6 receptor is a subtype of 5HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gs and mediates excitatory neurotransmission. ''HTR6'' denotes the human gene encoding for the receptor. Distribution The 5HT6 receptor is expressed almost exclusively in the brain. It is distributed in various areas including, but not limited to, the olfactory tubercle, cerebral cortex ( frontal and entorhinal regions), nucleus accumbens, striatum, caudate nucleus, hippocampus, and the molecular layer of the cerebellum. Based on its abundance in extrapyramidal, limbic, and cortical regions it can be suggested that the 5HT6 receptor plays a role in functions like motor control, emotionality, cognition, and memory. Function Blockade of central 5HT6 receptors has been shown to increase glutamatergic and cholinergic neurotransmission in various brain areas, whereas activation enh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


5-HT5A Receptor
5-Hydroxytryptamine (serotonin) receptor 5A, also known as HTR5A, is a protein that in humans is encoded by the ''HTR5A'' gene. Agonists and Receptor antagonist, antagonists for 5-HT receptors, as well as serotonin uptake inhibitors, present promnesic (memory-promoting) and/or anti-amnesic effects under different conditions, and 5-HT receptors are also associated with neural changes. Function The gene described in this record is a member of 5-HT receptor, 5-hydroxytryptamine receptor family and encodes a multi-pass membrane protein that functions as a receptor for 5-hydroxytryptamine and couples to G proteins, negatively influencing cAMP levels via Gi and Go. This protein has been shown to function in part through the regulation of intracellular Ca2+ mobilization. The 5-HT5A receptor has been shown to be functional in a native expression system. Rodents have been shown to possess two functional 5-HT5 receptor subtypes, 5-HT5A and 5-HT5B, however while humans possess a gene cod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]