183 (number)
183 (one hundred ndeighty-three) is the natural number following 182 and preceding 184. In mathematics 183 is a perfect totient number, a number that is equal to the sum of its iterated totients. Because 183 = 13^2 + 13 + 1, it is the number of points in a projective plane over the finite field \mathbb_. It is a repdigit in tredecimal (11113). 183 is the fourth element of a divisibility sequence 1,3,13,183,\dots in which the nth number a_n can be computed as a_n=a_^2+a_+1=\bigl\lfloor x^\bigr\rfloor, for a transcendental number In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . ... x\approx 1.38509. This sequence counts the number of trees of height \le n in which each node can have at most two children. There are 183 different semiorders on four labeled elements. See also * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
182 (number)
182 (one hundred ndeighty-two) is the natural number following 181 and preceding 183. In mathematics * 182 is an even number * 182 is a composite number, as it is a positive integer with a positive divisor other than one or itself * 182 is a deficient number, as the sum of its proper divisors, 154, is less than 182 * 182 is a member of the Mian–Chowla sequence: 1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182 * 182 is a nontotient number, as there is no integer with exactly 182 coprimes below it * 182 is an odious number * 182 is a pronic number, oblong number or heteromecic number, a number which is the product of two consecutive integers ( 13 × 14) * 182 is a repdigit in the D'ni numeral system ( 77), and in base 9 (222) * 182 is a sphenic number, the product of three prime factors * 182 is a square-free number In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
184 (number)
184 (one hundred ndeighty-four) is the natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ... following 183 and preceding 185. In mathematics There are 184 different Eulerian graphs on eight unlabeled vertices, and 184 paths by which a chess rook can travel from one corner of a 4 × 4 chessboard to the opposite corner without passing through the same square twice. 184 is also a refactorable number. In other fields Some physicists have proposed that 184 is a magic number for neutrons in atomic nuclei. See also * References Integers {{Num-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perfect Totient Number
In number theory, a perfect totient number is an integer that is equal to the sum of its iterated totients. That is, one applies the totient function to a number ''n'', apply it again to the resulting totient, and so on, until the number 1 is reached, and adds together the resulting sequence of numbers; if the sum equals ''n'', then ''n'' is a perfect totient number. Examples For example, there are six positive integers less than 9 and relatively prime to it, so the totient of 9 is 6; there are two numbers less than 6 and relatively prime to it, so the totient of 6 is 2; and there is one number less than 2 and relatively prime to it, so the totient of 2 is 1; and , so 9 is a perfect totient number. The first few perfect totient numbers are : 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, ... . Notation In symbols, one writes :\varphi^i(n) = \begin \varphi(n), &\text i = 1 \\ \varphi(\varphi^(n)), &\text i \geq 2 \end for th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iteration
Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. In mathematics and computer science, iteration (along with the related technique of recursion) is a standard element of algorithms. Mathematics In mathematics, iteration may refer to the process of iterated function, iterating a function, i.e. applying a function repeatedly, using the output from one iteration as the input to the next. Iteration of apparently simple functions can produce complex behaviors and difficult problems – for examples, see the Collatz conjecture and juggler sequences. Another use of iteration in mathematics is in iterative methods which are used to produce approximate numerical solutions to certain mathematical problems. Newton's method is an example of an iterative method. Manual calculation of a number's sq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler's Totient Function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Point (geometry)
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, or its generalization to other kinds of mathematical spaces. As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist. In classical Euclidean geometry, a point is a primitive notion, defined as "that which has no part". Points and other primitive notions are not defined in terms of other concepts, but only by certain formal properties, called axioms, that they must satisfy; for example, ''"there is exactly one straight line that passes through two distinct points"''. As physical diagrams, geometric figures are made with tools such as a compass, scriber, or pen, whose pointed tip can mark a small dot or prick a small hole representing a point, or can be drawn across a surface to represent a curve. A po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane (geometry), plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in Perspective (graphical)#Renaissance, perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Base 13
There are many different numeral systems, that is, writing systems for expressing numbers. By culture / time period "A ''base'' is a natural number B whose ''powers'' (B multiplied by itself some number of times) are specially designated within a numerical system." The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base). By type of notation Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base. Standard positional numeral systems The common names are derived Hexadecimal#Etymology, somewhat arbitrarily from a mix of Latin and Greek language, Greek, in some cases incl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisibility Sequence
In mathematics, a divisibility sequence is an integer sequence (a_n) indexed by positive integers ''n'' such that :\textm\mid n\texta_m\mid a_n for all ''m'', ''n''. That is, whenever one index is a multiple of another one, then the corresponding term also is a multiple of the other term. The concept can be generalized to sequences with values in any ring where the concept of divisibility is defined. A strong divisibility sequence is an integer sequence (a_n) such that for all positive integers ''m'', ''n'', :\gcd(a_m,a_n) = a_. Every strong divisibility sequence is a divisibility sequence: \gcd(m,n) = m if and only if m\mid n. Therefore, by the strong divisibility property, \gcd(a_m,a_n) = a_m and therefore a_m\mid a_n. Examples * Any constant sequence is a strong divisibility sequence. * Every sequence of the form a_n = kn, for some nonzero integer ''k'', is a divisibility sequence. * The numbers of the form 2^n-1 (Mersenne numbers) form a strong divisib ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transcendental Number
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . The quality of a number being transcendental is called transcendence. Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental. Transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set. All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic. The converse is not true: Not all irrational numbers are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |