174567 Varda
174567 Varda (provisional designation ) is a binary trans-Neptunian object, trans-Neptunian planetoid of the resonant hot classical population of the Kuiper belt, located in the outermost region of the Solar System. Its minor-planet moon, moon, Ilmarë, was discovered in 2009. Varda is a possible List of possible dwarf planets#Likeliest dwarf planets, dwarf planet. Objects in the size range of 400–1000 km, such as Varda, with albedos less than ≈0.2 and densities of ≈1.2 g/cm3 or less, have likely never compressed into fully solid bodies, let alone Planetary differentiation, differentiated, and so are highly unlikely to be dwarf planets. However, density calculations for Varda are ambiguous, and is not clear if Varda is above or below this estimated limit. Its low albedo is however consistent with a lack of the geological activity that would be expected of a dwarf planet. Discovery and orbit Varda was discovered in March 2006, using imagery dated from 21 June 2003, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Varda Symbol (bold)
Varda may refer to: People *Agnès Varda (1928–2019), French film director and professor *Jean Varda (1893–1971), Greek artist *Ratko Varda (born 1979), Bosnian basketball player *Rosalie Varda (born 1958), French costume designer, producer, writer and actress; daughter of Agnès Places *174567 Varda, a possible dwarf planet named after Tolkien's Varda *Mount Varda, a list of mountains in the Golan Heights, mountain in the Golan Heights *Varda, Greece, a town in Elis, Greece *Várda, a village in Somogy, Hungary *Varda, Slovenia, a settlement *Varda, Kosjerić, a village in Serbia *Varda Viaduct, a railway viaduct in southern Turkey Other uses *Varda (Middle-earth), a character in J. R. R. Tolkien's legendarium *Varda Space Industries, an American space research company *Voice Activated Radio Dispatched Alarm, a type of alarm system See also *Vardan, a name *Vardar (other) {{disambig, geo, surname ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar System" and "solar system" structures in theinaming guidelines document. The name is commonly rendered in lower case ('solar system'), as, for example, in the ''Oxford English Dictionary'' an''Merriam-Webster's 11th Collegiate Dictionary''. is the gravitationally bound Planetary system, system of the Sun and the objects that orbit it. It Formation and evolution of the Solar System, formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, forming the Sun and a protoplanetary disc. The Sun is a typical star that maintains a hydrostatic equilibrium, balanced equilibrium by the thermonuclear fusion, fusion of hydrogen into helium at its stellar core, core, releasing this energy from its outer photosphere. As ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precovery
In astronomy, precovery (short for pre-discovery recovery) is the process of finding the image of a celestial object in images or photographic plates predating its discovery, typically for the purpose of calculating a more accurate orbit. This happens most often with minor planets, but sometimes a comet, a dwarf planet, a natural satellite, or a star is found in old archived images; even exoplanet precovery observations have been obtained. "Precovery" refers to a pre-discovery image; "recovery" refers to imaging of a body which was lost to our view (as behind the Sun), but is now visible again ''(also see lost minor planet and lost comet)''. Orbit determination requires measuring an object's position on multiple occasions. The longer the interval between observations, the more accurately the orbit can be calculated; however, for a newly discovered object, only a few days' or weeks' worth of measured positions may be available, sufficient only for a preliminary (imprecise) orbit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Opposition (planets)
In positional astronomy, two astronomical objects are said to be in opposition when they are on opposite sides of the celestial sphere, as observed from a given body (usually Earth). A planet (or asteroid or comet) is said to be "in opposition" or "at opposition" when it is in opposition to the Sun. Because most orbits in the Solar System are nearly coplanar to the ecliptic, this occurs when the Sun, Earth, and the body are configured in an approximately straight line, or syzygy; that is, Earth and the body are in the same direction as seen from the Sun. Opposition occurs only for superior planets (see the diagram). The instant of opposition is defined as that when the apparent geocentric celestial longitude of the body differs by 180° from the apparent geocentric longitude of the Sun. At that time, a body is: * in apparent retrograde motion * visible almost all night – rising around sunset, culminating around midnight, and setting around sunrise * at the point i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perihelion
An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides pertaining to orbits around different bodies have distinct names to differentiate themselves from other apsides. Apsides pertaining to geocentric orbits, orbits around the Earth, are at the farthest point called the ''apogee'', and at the nearest point the ''perigee'', like with orbits of satellites and the Moon around Earth. Apsides pertaining to orbits around the Sun are named ''aphelion'' for the farthest and ''perihelion'' for the nearest point in a heliocentric orbit. Earth's two apsides are the farthest point, ''aphelion'', and the nearest point, ''perihelion'', of its orbit around the host Sun. The terms ''aphelion'' and ''perihelion'' apply in the same way to the orbits of Jupiter and the other planets, the comets, and the asteroids of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ecliptic
The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the fixed stars, background of stars – specifically the Zodiac constellations. The planets of the Solar System can also be seen along the ecliptic, because their orbital planes are very close to Earth's. The Moon's orbital plane is also similar to Earth's; the ecliptic is so named because the ancients noted that eclipses only occur when the Moon is crossing it. The ecliptic is an important Plane of reference, reference plane and is the basis of the ecliptic coordinate system. Ancient scientists were able to calculate Earth's axial tilt by comparing the ecliptic plane to that of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For pla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * Circular orbit: * Elliptic orbit: * Parabolic trajectory: * Hyperbolic trajectory: The eccentricity is given by e = \sqrt where ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semi-major Axis
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle. The length of the semi-major axis of an ellipse is related to the semi-minor axis's length through the eccentricity and the semi-latus rectum \ell, as follows: The semi-major axis of a hyperbola is, depending on the convention, plus or minus one half of the distance between the two branches. Thus it is the distance from the ce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spacewatch
The Spacewatch Project is an astronomical survey that specializes in the study of minor planets, including various types of asteroids and comets at University of Arizona telescopes on Kitt Peak near Tucson, Arizona. The Spacewatch Project has been active longer than any other similar currently active programs. Spacewatch was founded in 1980 by Tom Gehrels and Robert S. McMillan (astronomer), Robert S. McMillan, and is currently led by astronomer Melissa Brucker at the University of Arizona. Spacewatch uses several telescopes on Kitt Peak for follow-up observations of near-Earth objects. The Spacewatch Project uses three telescopes of apertures 0.9-m, 1.8-m, and 2.3-m. These telescopes are located on Kitt Peak, and the first two are dedicated to the purpose of locating Near-Earth object, Near-Earth Objects (NEOs). The 36 inch (0.9 meter) telescope on Kitt Peak has been in use by Spacewatch since 1984, and since 2000 the 72 inch (1.8 meter) Spacewatch telescope. Spacewatch' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Planetary Differentiation
In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior (e.g. density and chemical affinities). The process of planetary differentiation is mediated by partial melting with heat from radioactive isotope decay and planetary accretion. Planetary differentiation has occurred on planets, dwarf planets, the asteroid 4 Vesta, and natural satellites (such as the Moon). Physical differentiation Gravitational separation High- density materials tend to sink through lighter materials. This tendency is affected by the relative structural strengths, but such strength is reduced at temperatures where both materials are plastic or molten. Iron, the most common element that is likely to form a very dense molten metal phase, tends to congregate towards planetary interiors. With it, many siderophile elements (i.e. materials that readily alloy with iron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |