HOME





1053 Vigdis
1053 Vigdis, provisional designation , is a bright background asteroid from the central regions of the asteroid belt, approximately in diameter. It was discovered on 16 November 1925, by German astronomer Max Wolf at the Heidelberg-Königstuhl State Observatory in Heidelberg, Germany. The meaning of the asteroids's name is unknown. Orbit and classification ''Vigdis'' is a non-family asteroid of the main belt's background population. It orbits the Sun in the central asteroid belt at a distance of 2.4–2.9  AU once every 4 years and 3 months (1,544 days; semi-major axis of 2.61 AU). Its orbit has an eccentricity of 0.10 and an inclination of 8 ° with respect to the ecliptic. The asteroid was first observed at Algiers Observatory on 15 November 1925. The body's observation arc begins at Heidelberg with its official discovery observation the following night. Physical characteristics According to the survey carried out by the NEOWISE mission of NASA's Wide-field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marek Wolf
Marek Wolf (born 30 June 1957) is a Czech astronomer, former head the Astronomický ústav, Univerzita Karlova v Praze (Astronomical Institute, Charles University of Prague). He is a discoverer of several asteroids between 1995 and 2001, mostly in collaboration with Czech astronomers Lenka Kotková and Petr Pravec. The Minor Planet Center credits his discoveries under M. Wolf: he is sometimes confused with Max Wolf (1863–1932), a German astronomer and a very famous asteroid hunter who is credited as ''M. F. Wolf''. List of discovered minor planets See also * List of minor planet discoverers This is a list of minor-planet discoverers credited by the Minor Planet Center with the discovery of one or several minor planets (such as near-Earth and main-belt asteroids, Jupiter trojans and distant objects). , the discovery of 612,011 ... References External links personal home page 1957 births 20th-century astronomers Czech astronomers Discoverers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ecliptic
The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the fixed stars, background of stars – specifically the Zodiac constellations. The planets of the Solar System can also be seen along the ecliptic, because their orbital planes are very close to Earth's. The Moon's orbital plane is also similar to Earth's; the ecliptic is so named because the ancients noted that eclipses only occur when the Moon is crossing it. The ecliptic is an important Plane of reference, reference plane and is the basis of the ecliptic coordinate system. Ancient scientists were able to calculate Earth's axial tilt by comparing the ecliptic plane to that of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Johann Palisa
Johann Palisa (6 December 1848 – 2 May 1925) was an Austrian astronomer, born in Troppau, Austrian Silesia, now Czech Republic. He was a prolific discoverer of asteroids, discovering 122 in all, from 136 Austria in 1874 to 1073 Gellivara in 1923. Some of his notable discoveries include 153 Hilda, 216 Kleopatra, 243 Ida, 253 Mathilde, 324 Bamberga, and the near-Earth asteroid 719 Albert. Palisa made his discoveries without the aid of photography, and he remains the most successful visual (non-photographic) asteroid discoverer of all time. He was awarded the Valz Prize from the French Academy of Sciences in 1906. The asteroid 914 Palisana, discovered by Max Wolf in 1919, and the lunar crater '' Palisa'' were named in his honour. Biography Palisa was born on 6 December 1848, in Troppau in Austrian Silesia (now called ''Opava'' and located in the Czech Republic). From 1866 to 1870, Palisa studied mathematics and astron ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Auguste Charlois
Auguste Honoré Charlois (; November 26, 1864 – March 26, 1910) was a French astronomer who discovered 99 asteroids while working at the Nice Observatory in southeastern France. Asteroid discovery His first discovery was the asteroid 267 Tirza in 1887. He photographed 433 Eros on the very night of its discovery by Gustav Witt, but was not able to act quickly enough before Witt announced his find. Although he started searching for asteroids in the era of visual detection, by 1891 Max Wolf had pioneered the use of astrophotography to drastically speed up the rate of detection of asteroids, and both Wolf and Charlois separately discovered far more asteroids than would have been feasible by visual detection. In 1899, Charlois received the Prix Jules Janssen, the highest award of the Société astronomique de France, the French astronomical society, and was also awarded the Valz Prize by the French Academy of Sciences in 1889 for his work on calculating asteroid orbits. Murder At ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Named Minor Planets (alphabetical)
This is a list of named minor planets in an alphabetical, case-insensitive order grouped by the first letter of their name. New namings, typically proposed by the discoverer and approved by the Working Group for Small Bodies Nomenclature (WGSBN) of the International Astronomical Union, are published nowadays in their ''WGSBN Bulletin'' and summarized in a dedicated list several times a year. Over the last four decades, the list has grown significantly with an average rate of 492 new namings published every year (or 1.35 namings per day). While in March 1979, only 1924 minor planets had received a name and completed the designation process, , the list contains 24,836 named objects. This, however, only accounts for of all numbered bodies, as there are over 720,000 minor planets with a well established orbit which is a precondition for receiving a name. Of all these minor-planet names, 1311 contain diacritical marks. See also * List of minor planet discoverers * List o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minor Planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor planet'', but that year's meeting IAU definition of planet, reclassified minor planets and comets into dwarf planets and Small Solar System body, small Solar System bodies (SSSBs).Press release, IAU 2006 General Assembly: Result of the IAU Resolution votes
International Astronomical Union, August 24, 2006. Accessed May 5, 2008.
In contrast to the eight official planets of the Solar System, all minor planets fail to clearing the neighborhood, clear their orbital neighborhood. Minor planets include asteroids (near- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Poles Of Astronomical Bodies
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons. Poles of rotation The International Astronomical Union (IAU) defines the north pole of a planet or any of its satellites in the Solar System as the planetary pole that is in the same celestial hemisphere, relative to the invariable plane of the Solar System, as Earth's north pole. This definition is independent of the object's direction of rotation about its axis. This implies that an object's direction of rotation, when viewed from above its north pole, may be either clockwise or counterclockwise. The direction of rotation exhibited by most objects in the solar system (including Sun and Earth) is counterclockwise. Venus rotates clockwise, and Ur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Period
In astronomy, the rotation period or spin period of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the '' sidereal rotation period'' (or ''sidereal day''), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space). The other type of commonly used "rotation period" is the object's '' synodic rotation period'' (or ''solar day''), which may differ, by a fraction of a rotation or more than one rotation, to accommodate the portion of the object's orbital period around a star or another body during one day. Measuring rotation For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous or fluid bodies, such as stars and giant planets, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a giant pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photometry (astronomy)
In astronomy, photometry, from Greek '' photo-'' ("light") and '' -metry'' ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars (or other light sources) of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects. The methods used to perform photometry depend on the wavelength region under study. At its most basic, photometry is conducted by gathering light and passing it through specialized photometric optical bandpass filters, and then capturing and recording the light energy with a photosensitive instrument. Standard sets of passbands (called a photometric system) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lightcurve
In astronomy, a light curve is a graph (discrete mathematics), graph of the Radiance, light intensity of a celestial object or region as a function of time, typically with the magnitude (astronomy), magnitude of light received on the ''y''-axis and with time on the ''x''-axis. The light is usually in a particular frequency interval or frequency band, band. Light curves can be periodic, as in the case of eclipsing binary, eclipsing binaries, Cepheid variables, other periodic variables, and Methods of detecting extrasolar planets#Transit photometry, transiting extrasolar planets; or aperiodic, like the light curve of a nova, cataclysmic variable star, supernova, gravitational microlensing, microlensing event, or binary as observed during occultation events. The study of a light curve and other observations can yield considerable information about the physical process that produces such a light curve, or constrain the physical theories about it. Variable stars Graphs of the ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Albedo
Albedo ( ; ) is the fraction of sunlight that is diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects all incident radiation). ''Surface albedo'' is defined as the ratio of radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While directional-hemispherical reflectance factor is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as obtained from flux measurements) to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wide-field Infrared Survey Explorer
Wide-field Infrared Survey Explorer (WISE, List of observatory codes, observatory code C51, Explorer 92 and MIDEX-6) was a NASA infrared astronomy Space observatory, space telescope in the Explorers Program launched in December 2009.. . WISE List of minor planet discoverers#WISE, discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y dwarf, Y-type brown dwarf and Earth trojan, Earth trojan asteroid. ... . WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a diameter infrared telescope in Geocentric orbit, Earth orbit. After its solid hydrogen coolant depleted, it was placed in Hibernation (spaceflight), hibernation mode in February 2011. In 2013, NASA reactivated the WISE telescope to search for near-Earth objects (NEO), such as comets and asteroids, that could collide with Earth. The reactivation mission was called Near-Eart ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]