1045 Michela
1045 Michela, provisional designation , is an stony Massalian asteroid from the inner regions of the asteroid belt, approximately kilometers in diameter. It was discovered on 19 November 1924, by Belgian–American astronomer George Van Biesbroeck at the Yerkes Observatory in Williams Bay, Wisconsin, United States. The S-type asteroid was named after the discoverer's daughter, Micheline van Biesbroeck. Orbit and classification ''Michela'' is a member of the Massalia family (), a very large inner belt asteroid family consisting of stony asteroids. It orbits the Sun in the inner main-belt at a distance of 2.0–2.7 AU once every 3 years and 7 months (1,323 days; semi-major axis of 2.36 AU). Its orbit has an eccentricity of 0.16 and an inclination of 0 ° with respect to the ecliptic. The asteroid's observation arc begins with its observation as at the Goethe Link Observatory in November 1953, or 29 years after to its official discovery observation. Physical cha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
George Van Biesbroeck
George A. Van Biesbroeck (or Georges-Achille Van Biesbroeck, , January 21, 1880 – February 23, 1974) was a Belgian–American astronomer. He worked at observatories in Belgium, Germany and the United States. He specialized in the observation of double stars, asteroids and comets. He is notable for his long career as an observational astronomer. Life He was born in Ghent, Belgium on January 21, 1880, to a family of artists. At his father's request he pursued, and in 1902, he received, the 1st degree of Civil Engineering Construction and began work as a civil engineer for the Brussels Department of Roads and Bridges. But his true vocation is not there, it was astronomy, and while performing his official duties as a civil engineer he joined volunteers at the Uccle Observatory. In 1904 he left civil engineering behind and joined the staff at the Royal Observatory of Belgium at Uccle. He then enrolled at Ghent University and obtained a degree in theoretical astronomy. He worked ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For pla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Herget
Paul Herget (January 30, 1908 – August 27, 1981) was an American astronomer and director of the Cincinnati Observatory, who established the Minor Planet Center after World War II. Career Herget taught astronomy at the University of Cincinnati. He was a pioneer in the use of machine methods, and eventually digital computers, in the solving of scientific and specifically astronomical problems (for example, in the calculation of ephemeris tables for minor planets). During World War II he applied these same talents to the war effort, helping to locate U-boats by means of the application of spherical trigonometry. Herget established the Minor Planet Center at the university after the war in 1947. He was also named director of the Cincinnati Observatory. The Minor Planet Center was eventually relocated in 1978 to the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, where it still operates. Herget is also credited with helping design the shape of the Pringles ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minor Planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor planet'', but that year's meeting IAU definition of planet, reclassified minor planets and comets into dwarf planets and Small Solar System body, small Solar System bodies (SSSBs).Press release, IAU 2006 General Assembly: Result of the IAU Resolution votes International Astronomical Union, August 24, 2006. Accessed May 5, 2008. In contrast to the eight official planets of the Solar System, all minor planets fail to clearing the neighborhood, clear their orbital neighborhood. Minor planets include asteroids (near- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poles Of Astronomical Bodies
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons. Poles of rotation The International Astronomical Union (IAU) defines the north pole of a planet or any of its satellites in the Solar System as the planetary pole that is in the same celestial hemisphere, relative to the invariable plane of the Solar System, as Earth's north pole. This definition is independent of the object's direction of rotation about its axis. This implies that an object's direction of rotation, when viewed from above its north pole, may be either clockwise or counterclockwise. The direction of rotation exhibited by most objects in the solar system (including Sun and Earth) is counterclockwise. Venus rotates clockwise, and Ur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotation Period
In astronomy, the rotation period or spin period of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the '' sidereal rotation period'' (or ''sidereal day''), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space). The other type of commonly used "rotation period" is the object's '' synodic rotation period'' (or ''solar day''), which may differ, by a fraction of a rotation or more than one rotation, to accommodate the portion of the object's orbital period around a star or another body during one day. Measuring rotation For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous or fluid bodies, such as stars and giant planets, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a giant pl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lightcurve
In astronomy, a light curve is a graph (discrete mathematics), graph of the Radiance, light intensity of a celestial object or region as a function of time, typically with the magnitude (astronomy), magnitude of light received on the ''y''-axis and with time on the ''x''-axis. The light is usually in a particular frequency interval or frequency band, band. Light curves can be periodic, as in the case of eclipsing binary, eclipsing binaries, Cepheid variables, other periodic variables, and Methods of detecting extrasolar planets#Transit photometry, transiting extrasolar planets; or aperiodic, like the light curve of a nova, cataclysmic variable star, supernova, gravitational microlensing, microlensing event, or binary as observed during occultation events. The study of a light curve and other observations can yield considerable information about the physical process that produces such a light curve, or constrain the physical theories about it. Variable stars Graphs of the ap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astronomical Albedo
Albedo ( ; ) is the fraction of sunlight that is diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects all incident radiation). ''Surface albedo'' is defined as the ratio of radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While directional-hemispherical reflectance factor is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as obtained from flux measurements) to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wide-field Infrared Survey Explorer
Wide-field Infrared Survey Explorer (WISE, List of observatory codes, observatory code C51, Explorer 92 and MIDEX-6) was a NASA infrared astronomy Space observatory, space telescope in the Explorers Program launched in December 2009.. . WISE List of minor planet discoverers#WISE, discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y dwarf, Y-type brown dwarf and Earth trojan, Earth trojan asteroid. ... . WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a diameter infrared telescope in Geocentric orbit, Earth orbit. After its solid hydrogen coolant depleted, it was placed in Hibernation (spaceflight), hibernation mode in February 2011. In 2013, NASA reactivated the WISE telescope to search for near-Earth objects (NEO), such as comets and asteroids, that could collide with Earth. The reactivation mission was called Near-Eart ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NEOWISE
Wide-field Infrared Survey Explorer (WISE, observatory code C51, Explorer 92 and MIDEX-6) was a NASA infrared astronomy space telescope in the Explorers Program launched in December 2009.. . WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y-type brown dwarf and Earth trojan asteroid. ... . WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a diameter infrared telescope in Earth orbit. After its solid hydrogen coolant depleted, it was placed in hibernation mode in February 2011. In 2013, NASA reactivated the WISE telescope to search for near-Earth objects (NEO), such as comets and asteroids, that could collide with Earth. The reactivation mission was called Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE). As of August 2023, NEOWISE was 40% through the 20th coverage of the full sky. Science o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asteroid Spectral Type
An asteroid spectral type is assigned to asteroids based on their reflectance spectrum, color, and sometimes albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not internally differentiated, the surface and internal compositions are presumably similar, while large bodies such as Ceres and Vesta are known to have internal structure. Over the years, there has been a number of surveys that resulted in a set of different taxonomic systems such as the Tholen, SMASS and Bus–DeMeo classifications. Taxonomic systems In 1975, astronomers Clark R. Chapman, David Morrison, and Ben Zellner developed a simple taxonomic system for asteroids based on color, albedo, and spectral shape. The three categories were labelled " C" for dark carbonaceous objects, " S" for stony (siliceous) objects, and "U" for those that did not fit into either C or S. This basic division of asteroid spectra has since been expanded and clarified.T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |