Étale Algebra
   HOME





Étale Algebra
In commutative algebra, an étale algebra over a field (mathematics), field is a special type of algebra (ring theory), algebra, one that is isomorphism, isomorphic to a finite product of finite extension, finite separable field extensions. An étale algebra is a special sort of commutative separable algebra. Definitions Let be a field. Let be a commutative unital algebra, unital associative -algebra. Then is called an ''étale -algebra'' if any one of the following equivalent conditions holds: Examples The \mathbb-algebra \mathbb(i) is étale because it is a finite separable field extension. The \mathbb-algebra \mathbb[x]/(x^2) of dual numbers is not étale, since \mathbb[x]/(x^2)\otimes_\mathbb\mathbb \simeq \mathbb[x]/(x^2). Properties Let denote the absolute Galois group of . Then the category (mathematics), category of étale -algebras is equivalence of categories, equivalent to the category of finite group action, -sets with continuous -action. In particular, � ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Morphism
In algebraic geometry, an étale morphism () is a morphism of Scheme (mathematics), schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology. The word ''étale'' is a French adjective, which means "slack", as in "slack tide", or, figuratively, calm, immobile, something left to settle. Definition Let \phi : R \to S be a ring homomorphism. This makes S an R-algebra. Choose a monic polynomial f in R[x] and a polynomial g in R[x] such that the Formal derivative, derivative f' of f is a unit in (R[x]/fR[x])_g. We say that \phi is ''stand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Étale Fundamental Group
The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces. Topological analogue/informal discussion In algebraic topology, the fundamental group \pi_1(X,x) of a pointed topological space (X, x) is defined as the group of homotopy classes of loops based at x. This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology. In the classification of covering spaces, it is shown that the fundamental group is exactly the group of deck transformations of the universal covering space. This is more promising: finite étale morphisms of algebraic varieties are the appropriate analogue of covering spaces of topological spaces. Unfortunately, an algebraic variety X often fails to have a "universal cover" that is finite over ''X'', so one must consider the entire category of finite étale coverings of ''X''. O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Group Homomorphism
In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) where the group operation on the left side of the equation is that of ''G'' and on the right side that of ''H''. From this property, one can deduce that ''h'' maps the identity element ''eG'' of ''G'' to the identity element ''eH'' of ''H'', : h(e_G) = e_H and it also maps inverses to inverses in the sense that : h\left(u^\right) = h(u)^. \, Hence one can say that ''h'' "is compatible with the group structure". In areas of mathematics where one considers groups endowed with additional structure, a ''homomorphism'' sometimes means a map which respects not only the group structure (as above) but also the extra structure. For example, a homomorphism of topological groups is often required to be continuous. Properties Let e_ be the ident ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugacy Class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^ for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element ( singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures dra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the dual (category theory), opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Galois Group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' that fix ''K''. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When ''K'' is a perfect field, ''K''sep is the same as an algebraic closure ''K''alg of ''K''. This holds e.g. for ''K'' of characteristic zero, or ''K'' a finite field.) Examples * The absolute Galois group of an algebraically closed field is trivial. * The absolute Galois group of the real numbers is a cyclic group of two elements (complex conjugation and the identity map), since C is the separable closure of R, and its degree over R is ''C:Rnbsp;= 2. * The absolute Galois group of a finite field ''K'' is isomorphic to the group of profinite integers :: \hat = \varprojlim \mathbf/n\mathbf. :(For the notation, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Number
In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form , where and are real numbers, and is a symbol taken to satisfy \varepsilon^2 = 0 with \varepsilon\neq 0. Dual numbers can be added component-wise, and multiplied by the formula : (a+b\varepsilon)(c+d\varepsilon) = ac + (ad+bc)\varepsilon, which follows from the property and the fact that multiplication is a bilinear operation. The dual numbers form a commutative algebra of dimension two over the reals, and also an Artinian local ring. They are one of the simplest examples of a ring that has nonzero nilpotent elements. History Dual numbers were introduced in 1873 by William Clifford, and were used at the beginning of the twentieth century by the German mathematician Eduard Study, who used them to represent the dual angle which measures the relative position of two skew lines in space. Study defined a dual angle as , where is the angle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism Of Schemes
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. Definition By definition, a morphism of schemes is just a morphism of locally ringed spaces. Isomorphisms are defined accordingly. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties). Let ƒ:''X''→''Y'' be a morphism of schemes. If ''x'' is a point of ''X'', since ƒ is continuous, there are open affine subsets ''U'' = Spec ''A'' of ''X'' containing ''x'' and ''V'' = Spec ''B'' of ''Y'' such that ƒ(''U'') ⊆ ''V''. Then ƒ: ''U'' → ''V'' is a morphism of affine schemes and thus is induced by some ring homomorphism ''B'' → ''A'' (cf. #Affine case.) In fact, one can use this des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]