Velvet worms
   HOME

TheInfoList



OR:

Onychophora (from grc, ονυχής, , "claws"; and , , "to carry"), commonly known as velvet worms (due to their velvety texture and somewhat wormlike appearance) or more ambiguously as peripatus (after the first described genus, '' Peripatus''), is a phylum of elongate, soft-bodied, many-legged
panarthropods Panarthropoda is a proposed animal clade containing the extant phyla Arthropoda, Tardigrada (water bears) and Onychophora (velvet worms). Panarthropods also include extinct marine legged worms known as lobopodians ("Lobopodia"), a paraphyletic gr ...
. In appearance they have variously been compared to worms with legs, caterpillars, and slugs. They prey upon other invertebrates, which they catch by ejecting an adhesive slime. Approximately 200 species of velvet worms have been described, although the true number of species is likely greater. The two extant families of velvet worms are Peripatidae and
Peripatopsidae Peripatopsidae is one of the two living velvet worm families. Description The Peripatopsidae exhibit relatively many characteristics that are perceived as original or "primitive" with respect to the Peripatidae. The number of leg pairs in this ...
. They show a peculiar distribution, with the peripatids being predominantly equatorial and tropical, while the peripatopsids are all found south of the equator. It is the only phylum within Animalia that is wholly endemic to terrestrial environments, at least among extant members. Velvet worms are generally considered close relatives of the
Arthropoda Arthropods (, (gen. ποδός)) are invertebrate animals with an exoskeleton, a segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and cuticle made of chitin, ...
and
Tardigrada Tardigrades (), known colloquially as water bears or moss piglets, are a phylum of eight-legged segmented micro-animals. They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them Kleiner Wasserbä ...
, with which they form the proposed
taxon In biology, a taxon ( back-formation from '' taxonomy''; plural taxa) is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular n ...
Panarthropoda Panarthropoda is a proposed animal clade containing the extant phyla Arthropoda, Tardigrada (water bears) and Onychophora (velvet worms). Panarthropods also include extinct marine legged worms known as lobopodians ("Lobopodia"), a paraphylet ...
. This makes them of palaeontological interest, as they can help reconstruct the ancestral arthropod. In modern
zoology Zoology ()The pronunciation of zoology as is usually regarded as nonstandard, though it is not uncommon. is the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and ...
they are particularly renowned for their curious
mating In biology, mating is the pairing of either opposite- sex or hermaphroditic organisms for the purposes of sexual reproduction. ''Fertilization'' is the fusion of two gametes. ''Copulation'' is the union of the sex organs of two sexually reprod ...
behaviours and the bearing of live young in some species.


Anatomy

Velvet worms are segmented animals with a flattened cylindrical body cross-section and rows of unstructured body appendages known as oncopods or lobopods (informally: stub feet). They grow to between 0.5 and 20 cm (.2 to 8 in), with the average being about 5 cm (2  in). The number of leg pairs ranges from as few as 13 (in ''
Ooperipatellus nanus ''Ooperipatellus nanus'' is a species of velvet worm in the family Peripatopsidae. This species is endemic to New Zealand and is found in the South Island. Taxonomy This species was first described by Hilke Ruhberg in 1985. Description ' ...
'') to as many as 43 (in ''
Plicatoperipatus jamaicensis ''Plicatoperipatus'' is a monospecific genus of velvet worm containing the single species ''Plicatoperipatus jamaicensis''. It is endemic to Jamaica. This species ranges from 25 mm to 65 mm in length. Males in this species have 35 pairs of legs ...
''). Their
skin Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation. Other animal coverings, such as the arthropod exoskeleton, have different de ...
consists of numerous, fine transverse rings and is often inconspicuously coloured orange, red or brown, but sometimes also bright green, blue, gold or white, and occasionally patterned with other colours. Segmentation is outwardly inconspicuous, and identifiable by the regular spacing of the pairs of legs and in the regular arrangement of skin
pore Pore may refer to: Biology Animal biology and microbiology * Sweat pore, an anatomical structure of the skin of humans (and other mammals) used for secretion of sweat * Hair follicle, an anatomical structure of the skin of humans (and other m ...
s,
excretion Excretion is a process in which metabolic waste is eliminated from an organism. In vertebrates this is primarily carried out by the lungs, kidneys, and skin. This is in contrast with secretion, where the substance may have specific tasks after ...
organs and concentrations of
nerve cell A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. No ...
s. The individual body sections are largely unspecialised; even the head develops only a little differently from the
abdominal The abdomen (colloquially called the belly, tummy, midriff, tucky or stomach) is the part of the body between the thorax (chest) and pelvis, in humans and in other vertebrates. The abdomen is the front part of the abdominal segment of the torso ...
segments. Segmentation is apparently specified by the same
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
as in other groups of animals, and is activated in each case, during embryonic development, at the rear border of each segment and in the growth zone of the stub feet. Although onychophorans fall within the
protostome Protostomia () is the clade of animals once thought to be characterized by the formation of the organism's mouth before its anus during embryogenesis, embryonic development. This nature has since been discovered to be extremely variable among Pro ...
group, their early development has a deuterostome trajectory, (with the mouth and anus forming separately); this trajectory is concealed by the rather sophisticated processes which occur in early development.


Appendages

The stub feet that characterise the velvet worms are conical, baggy appendages of the body, which are internally hollow and have no joints. Although the number of feet can vary considerably between species, their structure is basically very similar. Rigidity is provided by the
hydrostatic Fluid statics or hydrostatics is the branch of fluid mechanics that studies the condition of the equilibrium of a floating body and submerged body "fluids at hydrostatic equilibrium and the pressure in a fluid, or exerted by a fluid, on an imme ...
pressure of their fluid contents, and movement is usually obtained passively by stretching and contraction of the animal's entire body. However, each leg can also be shortened and bent by internal muscles. Due to the lack of joints, this bending can take place at any point along the sides of the leg. In some species, two different organs are found within the feet: *Crural glands are situated at the shoulder of the legs, extending into the body cavity. They open outwards at the crural papillae—small wart-like bumps on the belly side of the leg—and secrete chemical messenger materials called
pheromone A pheromone () is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavio ...
s. Their name comes from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
''cruralis'' meaning "of the legs". *Coxal vesicles are pouches located on the belly side of the leg, which can be everted and probably serve in water absorption. They belong to the family Peripatidae and are named from , the Latin word for "hip". On each foot is a pair of retractable, hardened (sclerotised) chitin claws, which give the taxon its scientific name: Onychophora is derived from the grc, ονυχής, , "claws"; and , , "to carry". At the base of the claws are three to six spiny "cushions" on which the leg sits in its resting position and on which the animal walks over smooth substrates. The claws are used mainly to gain a firm foothold on uneven terrain. Each claw is composed of three stacked elements, like Russian nesting dolls. The outermost is shed during ecdysis, which exposes the next element in — which is fully formed, so does not need time to harden before it is used. (This distinctive construction identifies many early Cambrian fossils as early offshoots of the onychophoran lineage.) Apart from the pairs of legs, there are three further body appendages, which are at the head and comprise three segments: * On the first head segment is a pair of slender antennae, which serve in
sensory perception Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system ...
. They probably do not correspond directly to the antennae of the Arthropoda, but perhaps rather with their "lips" or labrum. At their base is found a pair of simple eyes, except in a few blind species. In front of these, in many Australian species, are various dimples, the function of which is not yet clear. It appears that in at least some species, these serve in the transfer of sperm-cell packages (
spermatophore A spermatophore or sperm ampulla is a capsule or mass containing spermatozoa created by males of various animal species, especially salamanders and arthropods, and transferred in entirety to the female's ovipore during reproduction. Spermatophores ...
s). * On the belly side of the second head segment is the labrum, a mouth opening surrounded by sensitive "lips". In the velvet worms, this structure is a muscular outgrowth of the
throat In vertebrate anatomy, the throat is the front part of the neck, internally positioned in front of the vertebrae. It contains the pharynx and larynx. An important section of it is the epiglottis, separating the esophagus from the trachea (windpip ...
, so, despite its name, it is probably not homologous to the labrum of the Arthropoda and is used for feeding. Deep within the oral cavity lie the sharp, crescent-shaped "jaws", or
mandibles In anatomy, the mandible, lower jaw or jawbone is the largest, strongest and lowest bone in the human facial skeleton. It forms the lower jaw and holds the lower teeth in place. The mandible sits beneath the maxilla. It is the only movable bone ...
, which are strongly hardened and resemble the claws of the feet, with which they are serially homologous; early in development, the jaw appendages have a position and shape similar to the subsequent legs. The jaws are divided into internal and external mandibles and their concave surface bears fine denticles. They move backward and forward in a longitudinal direction, tearing apart the prey, apparently moved in one direction by musculature and the other by hydrostatic pressure. The claws are made of sclerotised α-chitin, reinforced with phenols and quinones, and have a uniform composition – except that there is a higher concentration of calcium towards the tip, presumably affording greater strength. The surface of the mandibles is smooth, with no ornamentation. The cuticle in the mandibles (and claws) is distinct from the rest of the body. It has an inner and outer component; the outer component has just two layers (whereas body cuticle has four), and these outer layers (in particular the inner epicuticle) are dehydrated and strongly tanned, affording toughness.


Slime glands

On the third head segment, to the left and right of the mouth, are two openings designated "oral papillae". Within these are a pair of large, heavily internally branched slime glands. These lie roughly in the centre of the body and secrete a sort of milky-white slime, which is used to ensnare
prey Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill ...
and for defensive purposes. Sometimes the connecting "slime conductor" is broadened into a reservoir, which can buffer pre-produced slime. The slime glands themselves are probably modified crural glands. All three structures correspond to an
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
ary origin in the leg pairs of the other segments.


Skin and muscle

Unlike the arthropods, velvet worms do not possess a rigid
exoskeleton An exoskeleton (from Greek ''éxō'' "outer" and ''skeletós'' "skeleton") is an external skeleton that supports and protects an animal's body, in contrast to an internal skeleton (endoskeleton) in for example, a human. In usage, some of the ...
. Instead, their fluid-filled body cavity acts as a hydrostatic skeleton, similarly to many distantly related soft-bodied animals that are cylindrically shaped, for example
sea anemones Sea anemones are a group of predatory marine invertebrates of the order Actiniaria. Because of their colourful appearance, they are named after the ''Anemone'', a terrestrial flowering plant. Sea anemones are classified in the phylum Cnidaria, ...
and various
worm Worms are many different distantly related bilateral animals that typically have a long cylindrical tube-like body, no limbs, and no eyes (though not always). Worms vary in size from microscopic to over in length for marine polychaete wo ...
s. Pressure of their
incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An eq ...
internal bodily fluid on the body wall provides rigidity, and muscles are able to act against it. The body wall consists of a non-cellular outer skin, the
cuticula A cuticle (), or cuticula, is any of a variety of tough but flexible, non-mineral outer coverings of an organism, or parts of an organism, that provide protection. Various types of "cuticle" are non- homologous, differing in their origin, structu ...
; a single layer of epidermis cells forming an internal skin; and beneath this, usually three layers of muscle, which are embedded in connective tissues. The cuticula is about a micrometer thick and covered with fine villi. In composition and structure, it resembles the cuticula of the arthropods, consisting of α-chitin and various
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s, although not containing collagen. It can be divided into an external epicuticula and an internal procuticula, which themselves consist of exo- and endo-cuticula. This multi-level structure is responsible for the high flexibility of the outer skin, which enables the velvet worm to squeeze itself into the narrowest crevices. Although outwardly
water-repellent Waterproofing is the process of making an object or structure waterproof or water-resistant so that it remains relatively unaffected by water or resisting the ingress of water under specified conditions. Such items may be used in wet environme ...
, the cuticula is not able to prevent water loss by
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
, and, as a result, velvet worms can live only in
microclimate A microclimate (or micro-climate) is a local set of atmospheric conditions that differ from those in the surrounding areas, often with a slight difference but sometimes with a substantial one. The term may refer to areas as small as a few squ ...
s with high
humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. Humidity dep ...
to avoid desiccation. The surface of the cuticula is scattered with numerous fine papillae, the larger of which carry visible villi-like sensitive bristles. The papillae themselves are covered with tiny scales, lending the skin a
velvet Weave details visible on a purple-colored velvet fabric Velvet is a type of woven tufted fabric in which the cut threads are evenly distributed, with a short pile, giving it a distinctive soft feel. By extension, the word ''velvety'' means ...
y appearance (from which the common name is likely derived). It also feels like dry velvet to the touch, for which its water-repellent nature is responsible. Moulting of the skin ( ecdysis) takes place regularly, around every 14 days, induced by the
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are require ...
ecdysone Ecdysone is a prohormone of the major insect molting hormone 20-hydroxyecdysone, which is secreted from the prothoracic glands. It is of steroidal structure. Insect molting hormones (ecdysone and its homologues) are generally called ecdysteroids. ...
. The inner surface of the skin bears a hexagonal pattern. At each moult, the shed skin is replaced by the epidermis, which lies immediately beneath it; unlike the cuticula, this consists of living cells. Beneath this lies a thick layer of connective tissue, which is composed primarily of collagen fibres aligned either
parallel Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in parallel * Parallel Sysplex, a cluster of ...
or
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It ca ...
to the body's longitudinal axis. The colouration of Onychophora is generated by a range of pigments. The solubility of these pigments is a useful diagnostic character: in all arthropods and tardigrades, the body pigment is soluble in ethanol. This is also true for the Peripatidae, but in the case of the Peripatopsidae, the body pigment is insoluble in ethanol. Within the connective tissue lie three continuous layers of unspecialised smooth muscular tissue. The relatively thick outer layer is composed of annular muscles, and the similarly voluminous inner layer of longitudinal muscles. Between them lie thin diagonal muscles that wind backward and forward along the body axis in a spiral. Between the annular and diagonal muscles exist fine
blood vessel The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away ...
s, which lie below the superficially recognisable transverse rings of the skin and are responsible for the pseudo-segmented markings. Beneath the internal muscle layer lies the body cavity. In cross-section, this is divided into three regions by so-called dorso-ventral muscles, which run from the middle of the underbelly through to the edges of the upper side: a central midsection and on the left and right, two side regions that also include the legs.


Circulation

The body cavity is known as a "pseudocoel", or haemocoel. Unlike a true coelom, a pseudocoel is not fully enclosed by a cell layer derived from the embryonic mesoderm. A coelom is, however, formed around the gonads and the waste-eliminating
nephridia The nephridium (plural ''nephridia'') is an invertebrate organ, found in pairs and performing a function similar to the vertebrate kidneys (which originated from the chordate nephridia). Nephridia remove metabolic wastes from an animal's body. Neph ...
. As the name ''haemocoel'' suggests, the body cavity is filled with a
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the cir ...
-like liquid in which all the organs are embedded; in this way, they can be easily supplied with nutrients circulating in the blood. This liquid is colourless as it does not contain
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s; for this reason, it serves only a limited role in
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
transport. Two different types of blood cells (or haemocytes) circulate in the fluid:
Amoebocyte An amebocyte or amoebocyte () is a mobile cell (moving like an amoeba) in the body of invertebrates including cnidaria, echinoderms, molluscs, tunicates, sponges and some chelicerates. They move by pseudopodia. Similarly to some of the white blood c ...
s and nephrocytes. The amoebocytes probably function in protection from
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
and other foreign bodies; in some species, they also play a role in reproduction. Nephrocytes absorb
toxin A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849 ...
s or convert them into a form suitable for elimination by the nephridia. The haemocoel is divided by a horizontal partition, the diaphragm, into two parts: The pericardial sinus along the back and the perivisceral sinus along the belly. The former encloses the tube-like heart, and the latter, the other organs. The diaphragm is perforated in many places, enabling the exchange of fluids between the two cavities. The heart itself is a tube of annular muscles consisting of
epithelial Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercell ...
tissues, with two lateral openings ( ostia) per segment. While it is not known whether the rear end is open or closed, from the front, it opens directly into the body cavity. Since there are no blood vessels, apart from the fine vessels running between the muscle layers of the body wall and a pair of arteries that supply the antennae, this is referred to as an open circulation. The timing of the pumping procedure can be divided into two parts:
Diastole Diastole ( ) is the relaxed phase of the cardiac cycle when the chambers of the heart are re-filling with blood. The contrasting phase is systole when the heart chambers are contracting. Atrial diastole is the relaxing of the atria, and ventri ...
and systole. During diastole, blood flows through the ostia from the pericardial sinus (the cavity containing the heart) into the heart. When the systole begins, the ostia close and the heart muscles contract inwards, reducing the volume of the heart. This pumps the blood from the front end of the heart into the perivisceral sinus containing the organs. In this way, the various organs are supplied with nutrients before the blood finally returns to the pericardial sinus via the perforations in the diaphragm. In addition to the pumping action of the heart, body movements also influence circulation.


Respiration

Oxygen uptake occurs to an extent via simple
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
through the entire body surface, with the coxal vesicles on the legs possibly being involved in some species. However, of most importance is gas exchange via fine unbranched tubes, the
trachea The trachea, also known as the windpipe, is a cartilaginous tube that connects the larynx to the bronchi of the lungs, allowing the passage of air, and so is present in almost all air- breathing animals with lungs. The trachea extends from the ...
e, which draw oxygen from the surface deep into the various organs, particularly the heart. The walls of these structures, which are less than three micrometers thick in their entirety, consist only of an extremely thin
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
through which oxygen can easily diffuse. The tracheae originate at tiny openings, the spiracles, which themselves are clustered together in dent-like recesses of the outer skin, the atria. The number of "tracheae bundles" thus formed is on average around 75 bundles per body segment; they accumulate most densely on the back of the organism. Unlike the arthropods, the velvet worms are unable to control the openings of their tracheae; the tracheae are always open, entailing considerable water loss in
arid A region is arid when it severely lacks available water, to the extent of hindering or preventing the growth and development of plant and animal life. Regions with arid climates tend to lack vegetation and are called xeric or desertic. Most ...
conditions. Water is lost twice as fast as in earthworms and forty times faster than in caterpillars. For this reason, velvet worms are dependent upon
habitat In ecology, the term habitat summarises the array of resources, physical and biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species habitat can be seen as the physical ...
s with high air humidity.


Digestion

The digestive tract begins slightly behind the head, the mouth lying on the underside a little way from the frontmost point of the body. Here, prey can be mechanically dismembered by the mandibles with their covering of fine toothlets. Two salivary glands discharge via a common conductor into the subsequent "throat", which makes up the first part of the front intestine. The saliva that they produce contains mucus and
hydrolytic Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysi ...
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s, which initiate
digestion Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intest ...
in and outside the mouth. The throat itself is very muscular, serving to absorb the partially liquified food and to pump it, via the
oesophagus The esophagus (American English) or oesophagus (British English; both ), non-technically known also as the food pipe or gullet, is an organ in vertebrates through which food passes, aided by peristaltic contractions, from the pharynx to th ...
, which forms the rear part of the front intestine, into the central intestine. Unlike the front intestine, this is not lined with a cuticula but instead consists only of a single layer of epithelial tissue, which does not exhibit conspicuous indentation as is found in other animals. On entering the central intestine, food particles are coated with a mucus-based peritrophic membrane, which serves to protect the lining of the intestine from damage by sharp-edged particles. The intestinal epithelium secretes further digestive enzymes and absorbs the released nutrients, although the majority of digestion has already taken place externally or in the mouth. Indigestible remnants arrive in the rear intestine, or rectum, which is once again lined with a cuticula and which opens at the anus, located on the underside near to the rear end. In almost every segment is a pair of excretory organs called nephridia, which are derived from coelom tissue. Each consists of a small pouch that is connected, via a flagellated conductor called a nephridioduct, to an opening at the base of the nearest leg known as a nephridiopore. The pouch is occupied by special cells called
podocyte Podocytes are cells in Bowman's capsule in the kidneys that wrap around capillaries of the glomerulus. Podocytes make up the epithelial lining of Bowman's capsule, the third layer through which filtration of blood takes place. Bowman's capsule ...
s, which facilitate
ultrafiltration Ultrafiltration (UF) is a variety of membrane filtration in which forces such as pressure or concentration gradients lead to a separation through a semipermeable membrane. Suspended solids and solutes of high molecular weight are retained in the ...
of the blood through the partition between haemocoelom and nephridium. The composition of the
urinary The urinary system, also known as the urinary tract or renal system, consists of the kidneys, ureters, bladder, and the urethra. The purpose of the urinary system is to eliminate waste from the body, regulate blood volume and blood pressure, co ...
solution is modified in the nephridioduct by selective recovery of nutrients and water and by isolation of poison and waste materials, before it is excreted to the outside world via the nephridiopore. The most important nitrogenous excretion product is the water-insoluble
uric acid Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown ...
; this can be excreted in solid state, with very little water. This so-called
uricotelic Metabolic wastes or excrements are substances left over from metabolic processes (such as cellular respiration) which cannot be used by the organism (they are surplus or toxic), and must therefore be excreted. This includes nitrogen compounds, ...
excretory mode represents an adjustment to life on land and the associated necessity of dealing economically with water. A pair of former nephridia in the head were converted secondarily into the salivary glands, while another pair in the final segment of male specimens now serve as glands that apparently play a role in reproduction.


Sensation

The entire body, including the stub feet, is littered with numerous papillae: warty protrusions responsive to touch that carry a mechanoreceptive bristle at the tip, each of which is also connected to further sensory nerve cells lying beneath. The mouth papillae, the exits of the slime glands, probably also have some function in
sensory perception Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system ...
. Sensory cells known as "sensills" on the "lips" or labrum respond to chemical stimuli and are known as
chemoreceptor A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance (endogenous or induced) to generate a biological signal. This signal may be in the form of an action potential, if the chemorecept ...
s. These are also found on the two antennae, which seem to be the velvet worm's most important sensory organs. Except in a few (typically subterranean) species, one simply constructed eye (ocellus) lies behind each antenna, laterally, just underneath the head. This consists of a chitinous ball
lens A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements ...
, a
cornea The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical ...
and a
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
and is connected to the centre of the
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a ve ...
via an
optic nerve In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual information from the retina to the brain. In humans, the optic nerve is derived fro ...
. The retina comprises numerous pigment cells and photoreceptors; the latter are easily modified flagellated cells, whose
flagellum A flagellum (; ) is a hairlike appendage that protrudes from certain plant and animal sperm cells, and from a wide range of microorganisms to provide motility. Many protists with flagella are termed as flagellates. A microorganism may have f ...
membranes carry a photosensitive pigment on their surface. The
rhabdom The compound eyes of arthropods like insects, crustaceans and millipedes are composed of units called ommatidia (singular: ommatidium). An ommatidium contains a cluster of photoreceptor cells surrounded by support cells and pigment cells. The ou ...
eric eyes of the Onychophora are thought to be homologous with the median ocelli of arthropods; this would suggest that the last common ancestor of arthropods may have only had median ocelli. However, the innervation shows that the homology is limited: The eyes of Onychophora form behind the antenna, whereas the opposite is true in arthropods.


Reproduction

Both sexes possess pairs of gonads, opening via a channel called a gonoduct into a common genital opening, the
gonopore A gonopore, sometimes called a gonadopore, is a genital pore in many invertebrates. Hexapods, including insects have a single common gonopore, except mayflies, which have a pair of gonopores. More specifically, in the unmodified female it is t ...
, which is located on the rear ventral side. Both the gonads and the gonoduct are derived from true coelom tissue. In females, the two
ovaries The ovary is an organ in the female reproductive system that produces an ovum. When released, this travels down the fallopian tube into the uterus, where it may become fertilized by a sperm. There is an ovary () found on each side of the body. T ...
are joined in the middle and to the horizontal diaphragm. The gonoduct appears differently depending on whether the species is live-bearing or egg-laying. In live-bearing species, each exit channel divides into a slender oviduct and a roomy "womb", the
uterus The uterus (from Latin ''uterus'', plural ''uteri'') or womb () is the organ in the reproductive system of most female mammals, including humans that accommodates the embryonic and fetal development of one or more embryos until birth. The ...
, in which the embryos develop. The single
vagina In mammals, the vagina is the elastic, muscular part of the female genital tract. In humans, it extends from the vestibule to the cervix. The outer vaginal opening is normally partly covered by a thin layer of mucosal tissue called the hymen ...
, to which both uteri are connected, runs outward to the gonopore. In egg-laying species, whose gonoduct is uniformly constructed, the genital opening lies at the tip of a long egg-laying apparatus, the ovipositor. The females of many species also possess a sperm repository called the ''receptacle seminis'', in which sperm cells from males can be stored temporarily or for longer periods. Males possess two separate
testes A testicle or testis (plural testes) is the male reproductive gland or gonad in all bilaterians, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testoste ...
, along with the corresponding sperm vesicle (the vesicula seminalis) and exit channel (the vasa efferentia). The two vasa efferentia unite to a common sperm duct, the
vas deferens The vas deferens or ductus deferens is part of the male reproductive system of many vertebrates. The ducts transport sperm from the epididymis to the ejaculatory ducts in anticipation of ejaculation. The vas deferens is a partially coiled tube ...
, which in turn widens through the ejaculatory channel to open at the gonopore. Directly beside or behind this lie two pairs of special glands, which probably serve some auxiliary reproductive function; the rearmost glands are also known as anal glands. A
penis A penis (plural ''penises'' or ''penes'' () is the primary sexual organ that male animals use to inseminate females (or hermaphrodites) during copulation. Such organs occur in many animals, both vertebrate and invertebrate, but males d ...
-like structure has so far been found only in males of the genus ''Paraperipatus'' but has not yet been observed in action. There are different mating procedures: In some species males deposit their
spermatophore A spermatophore or sperm ampulla is a capsule or mass containing spermatozoa created by males of various animal species, especially salamanders and arthropods, and transferred in entirety to the female's ovipore during reproduction. Spermatophores ...
directly into the female's genitals opening, while others deposit it on the female's body, where the cuticle will collapse and allowing the sperm cells to migrate into the female. There are also Australian species where the male place their spermatophore on top of their head, which is then pressed against the female's genitals. In these species the head have elaborate structures like spikes, spines, hollow stylets, pits, and depressions, whose purpose is to either hold the sperm and / or assist in the sperm transfer to the female. The males of most species also secrete a pheromone from glands on the underside of the legs to attract females.


Distribution and habitat


Distribution

Velvet worms live in all
tropical The tropics are the regions of Earth surrounding the Equator. They are defined in latitude by the Tropic of Cancer in the Northern Hemisphere at N and the Tropic of Capricorn in the Southern Hemisphere at S. The tropics are also referred to ...
habitats and in the
temperate zone In geography, the temperate climates of Earth occur in the middle latitudes (23.5° to 66.5° N/S of Equator), which span between the tropics and the polar regions of Earth. These zones generally have wider temperature ranges throughout t ...
of the Southern Hemisphere, showing a circumtropical and circumaustral distribution. Individual species are found in Central and
South America South America is a continent entirely in the Western Hemisphere and mostly in the Southern Hemisphere, with a relatively small portion in the Northern Hemisphere at the northern tip of the continent. It can also be described as the sout ...
; the Caribbean islands; equatorial
West Africa West Africa or Western Africa is the westernmost region of Africa. The United Nations defines Western Africa as the 16 countries of Benin, Burkina Faso, Cape Verde, The Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, M ...
and
Southern Africa Southern Africa is the southernmost subregion of the African continent, south of the Congo and Tanzania. The physical location is the large part of Africa to the south of the extensive Congo River basin. Southern Africa is home to a number o ...
; northeastern
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the so ...
; Thailand; Indonesia and parts of Malaysia; New Guinea; Australia; and New Zealand. Fossils have been found in Baltic amber, indicating that they were formerly more widespread in the Northern Hemisphere when conditions were more suitable.


Habitat

Velvet worms always sparsely occupy the habitats where they are found: They are rare among the fauna which they are a part of. All extant velvet worms are terrestrial (land-living) and prefer dark environments with high air humidity. They are found particularly in the rainforests of the tropics and temperate zones, where they live among moss cushions and leaf litter, under tree trunks and stones, in rotting wood or in termite tunnels. They also occur in unforested grassland, if there exist sufficient fracture (geology), crevices in the soil into which they can withdraw during the day, and in caves. Two species live in caves, a habitat to which their ability to squeeze themselves into the smallest cracks makes them exceptionally well-adapted and in which constant living conditions are guaranteed. Since the essential requirements for cave life were probably already present prior to the settlement of these habitats, this may be described as exaptation. Some species of velvet worms are able to occupy human-modified land-uses, such as Theobroma cacao, cocoa and banana plantations in South America and the Caribbean, but for others, conversion of rainforests is likely one of the most important threats to their survival (see #Conservation, Conservation). Velvet worms are photophobic: They are repelled by bright light sources. Because the danger of desiccation is greatest during the day and in dry weather, it is not surprising that velvet worms are usually most active at night and during rainy weather. Under cold or dry conditions, they actively seek out crevices in which they shift their body into a resting state.


Slime

The Onychophora forcefully projectile use by living systems, squirt glue-like slime from their oral papillae; they do so either in defense against predators or to capture prey. The openings of the glands that produce the slime are in the papillae, a pair of highly modified limbs on the sides of the head below the antennae. Inside, they have a syringe-like system that, by a geometric amplifier, allows for fast squirt using slow muscular contraction. High speed films show the animal expelling two streams of adhesive liquid through a small opening (50 to 200 microns) at a speed of . The interplay between the elasticity of oral papillae and the fast unsteady flow produces a passive oscillatory motion (30–60 Hz) of the oral papillae. The oscillation causes the streams to cross in mid air, weaving a disordered net; the velvet worms can control only the general direction where the net is thrown. The slime glands themselves are deep inside the body cavity, each at the end of a tube more than half the length of the body. The tube both conducts the fluid and stores it until it is required. The distance that the animal can propel the slime varies; usually it squirts it about a centimetre, but the maximal range has variously been reported to be ten centimetres, or even nearly a foot, although accuracy drops with range. It is not clear to what extent the range varies with the species and other factors. One squirt usually suffices to snare a prey item, although larger prey may be further immobilised by smaller squirts targeted at the limbs; additionally, the fangs of spiders are sometimes targeted. Upon ejection, it forms a net of threads about twenty microns in diameter, with evenly spaced droplets of viscous adhesive fluid along their length. It subsequently dries, shrinking, losing its stickiness, and becoming brittle. Onychophora eat their dried slime when they can, which is appropriate, because it takes an onychophoran about 24 days to replenish an exhausted slime repository. The slime can account for up to 11% of the organism's dry weight and is 90% water; its dry residue consists mainly of proteins — primarily a collagen-type protein. 1.3% of the slime's dry weight consists of sugars, mainly galactosamine. The slime also contains lipids and the surfactant nonylphenol. Onychophora are the only organisms known to produce this latter substance. It tastes "slightly bitter and at the same time somewhat astringent". The proteinaceous composition accounts for the slime's high tensile strength and stretchiness. The lipid and nonylphenol constituents may serve one of two purposes. They may line the ejection channel, stopping the slime from sticking to the organism when it is secreted; or they may slow the drying process long enough for the slime to reach its target.


Behaviour


Locomotion

Velvet worms/Onychophora move in a slow and gradual motion that makes them difficult for prey to notice. Their trunk is raised relatively high above the ground, and they walk with non-overlapping steps. To move from place to place, the velvet worm crawls forward using its legs; unlike in arthropods, both legs of a pair are moved simultaneously. The claws of the feet are used only on hard, rough terrain where a firm grip is needed; on soft substrates, such as moss, the velvet worm walks on the foot cushions at the base of the claws. Actual locomotion is achieved less by the exertion of the leg muscles than by local changes of body length. This can be controlled using the annular and longitudinal muscles. If the annular muscles are contracted, the body cross-section is reduced, and the corresponding segment lengthens; this is the usual mode of operation of the hydrostatic skeleton as also employed by other worms. Due to the stretching, the legs of the segment concerned are lifted and swung forward. Local contraction of the longitudinal muscles then shortens the appropriate segment, and the legs, which are now in contact with the ground, are moved to the rear. This part of the locomotive cycle is the actual leg stroke that is responsible for forward movement. The individual stretches and contractions of the segments are coordinated by the nervous system such that contraction waves run the length of the body, each pair of legs swinging forward and then down and rearward in succession. ''Macroperipatus'' can reach speeds of up to four centimetres per second, although speeds of around 6 body-lengths per minute are more typical. The body gets longer and narrower as the animal picks up speed; the length of each leg also varies during each stride.


Sociality

The brains of Onychophora, though small, are very complex; consequently, the organisms are capable of rather sophisticated social interactions. Behaviour may vary from genus to genus, so this article reflects the most-studied genus, ''Euperipatoides''. The ''Euperipatoides'' form social groups of up to fifteen individuals, usually closely related, which will typically live and hunt together. Groups usually live together; in drier regions an example of a shared home would be the moist interior of a rotting log. Group members are extremely aggressive towards individuals from other logs. Dominance is achieved through aggression and maintained through submissive behaviour. After a kill, the dominant female always feeds first, followed in turn by the other females, then males, then the young. When assessing other individuals, individuals often measure one another up by running their antennae down the length of the other individual. Once hierarchy has been established, pairs of individuals will often cluster together to form an "aggregate"; this is fastest in male-female pairings, followed by pairs of females, then pairs of males. Social hierarchy is established by a number of interactions: Higher-ranking individuals will chase and bite their subordinates while the latter are trying to crawl on top of them. Juveniles never engage in aggressive behaviour, but climb on top of adults, which tolerate their presence on their backs. Hierarchy is quickly established among individuals from a single group, but not among organisms from different groups; these are substantially more aggressive and very rarely climb one another or form aggregates. Individuals within an individual log are usually closely related; especially so with males. This may be related to the intense aggression between unrelated females.


Feeding

Velvet worms are ambush predators, hunting nocturnality, only by night, and are able to capture animals at least their own size, although capturing a large prey item may take almost all of their mucus-secreting capacity. They feed on almost any small invertebrates, including woodlice (Isopoda), termites (Isoptera), crickets (Gryllidae), book/bark lice (Psocoptera), cockroaches (Blattidae), millipedes and centipedes (Myriapoda), spiders (Araneae), various worms, and even large snails (Gastropoda). Depending on their size, they eat on average every one to four weeks. They are considered to be ecology, ecologically equivalent to centipedes (Chilopoda). The most energetically favourable prey are two-fifths the size of the hunting onychophoran. Ninety percent of the time involved in eating prey is spent ingesting it; re-ingestion of the slime used to trap the insect is performed while the onychophoran locates a suitable place to puncture the prey, and this phase accounts for around 8% of the feeding time, with the remaining time evenly split between examining, squirting, and injecting the prey. In some cases, chunks of the prey item are bitten off and swallowed; undigestable components take around 18 hours to pass through the digestive tract. Onychophora probably do not primarily use vision to detect their prey; although their tiny eyes do have a good image-forming capacity, their forward vision is obscured by their antennae; their nocturnal habit also limits the utility of eyesight. Air currents, formed by prey motion, are thought to be the primary mode of locating prey; the role of scent, if any, is unclear. Because it takes so long to ingest a prey item, hunting mainly happens around dusk; the onychophorans will abandon their prey at sunrise. This predatory way of life is probably a consequence of the velvet worm's need to remain moist. Due to the continual risk of desiccation, often only a few hours per day are available for finding food. This leads to a strong selection for a low cost-benefit ratio, which cannot be achieved with a herbivorous diet. Velvet worms literally creep up on their prey, with their smooth, gradual and fluid movement escaping detection. Once they reach their prey, they touch it very softly with their antennae to assess its size and nutritional value. After each poke, the antenna is hastily retracted to avoid alerting the prey. This investigation may last anywhere upwards of ten seconds, until the velvet worm makes a decision as to whether to attack it, or until it disturbs the prey and the prey flees. Hungry Onychophora spend less time investigating their prey and are quicker to apply their slime. Once slime has been squirted, Onychophora are determined to pursue and devour their prey, in order to recoup the energy investment. They have been observed to spend up to ten minutes searching for removed prey, after which they return to their slime to eat it. In the case of smaller prey, they may opt not to use slime at all. Subsequently, a soft part of the prey item (usually a joint membrane in arthropod prey) is identified, punctured with a bite from the jaws, and injected with saliva. This kills the prey very quickly and begins a slower process of digestion. While the onychophoran waits for the prey to digest, it salivates on its slime and begins to eat it (and anything attached to it). It subsequently tugs and slices at the earlier perforation to allow access to the now-liquefied interior of its prey. The jaws operate by moving backwards and forwards along the axis of the body (not in a side-to-side clipping motion as in arthropods), conceivably using a pairing of musculature and hydrostatic pressure. The pharynx is specially adapted for sucking, to extract the liquefied tissue; the arrangement of the jaws about the tongue and lip papillae ensures a tight seal and the establishment of suction. In social groups, the dominant female is the first to feed, not permitting competitors access to the prey item for the first hour of feeding. Subsequently, subordinate individuals begin to feed. The number of males reaches a peak after females start to leave the prey item. After feeding, individuals clean their antennae and mouth parts before re-joining the rest of their group.


Reproduction and life-cycle

Almost all species of velvet worm reproduce sexually. The sole exception is ''Epiperipatus imthurni'', of which no males have been observed; reproduction instead occurs by parthenogenesis. All species are in principle sexually distinct and bear, in many cases, a marked sexual dimorphism: the females are usually larger than the males and have, in species where the number of legs is variable, more legs. The females of many species are fertilized only once during their lives, which leads to copulation (zoology), copulation sometimes taking place before the reproductive organs of the females are fully developed. In such cases, for example at the age of three months in ''Macroperipatus torquatus'', the transferred sperm cells are kept in a special reservoir, where they can remain :wikt:viable, viable for longer periods. Fertilization takes place internal fertilisation, internally, although the mode of sperm transmission varies widely. In most species, for example in the genus '' Peripatus'', a package of sperm cells called the
spermatophore A spermatophore or sperm ampulla is a capsule or mass containing spermatozoa created by males of various animal species, especially salamanders and arthropods, and transferred in entirety to the female's ovipore during reproduction. Spermatophores ...
is placed into the genital opening of the female. The detailed process by which this is achieved is in most cases still unknown, a true
penis A penis (plural ''penises'' or ''penes'' () is the primary sexual organ that male animals use to inseminate females (or hermaphrodites) during copulation. Such organs occur in many animals, both vertebrate and invertebrate, but males d ...
having been observed only in species of the genus ''Paraperipatus''. In many Australian species, there exist dimples or special dagger- or axe-shaped structures on the head; the male of ''Florelliceps stutchburyae'' presses a long spine (zoology), spine against the female's genital opening and probably positions its spermatophore there in this way. During the process, the female supports the male by keeping him clasped with the claws of her last pair of legs. The mating behavior of two species of the genus ''Peripatopsis'' is particularly curious. Here, the male places two-millimetre spermatophores on the back or sides of the female.
Amoebocyte An amebocyte or amoebocyte () is a mobile cell (moving like an amoeba) in the body of invertebrates including cnidaria, echinoderms, molluscs, tunicates, sponges and some chelicerates. They move by pseudopodia. Similarly to some of the white blood c ...
s from the female's
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the cir ...
collect on the inside of the wikt:deposition, deposition site, and both the spermatophore's casing and the body wall on which it rests are decomposed via the secretion of
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s. This releases the sperm cells, which then move freely through the haemocoel, penetrate the external wall of the ovaries and finally fertilize the ovum, ova. Why this self-inflicted skin injury does not lead to bacterial infections is not yet understood (though likely related to the enzymes used to deteriorate the skin or facilitate the transfer of viable genetic material from male to female). Velvet worms are found in egg-laying (ovipary, oviparous), egg-live-bearing (ovovivipary, ovoviviparous) and live-bearing (viviparity, viviparous) forms. *Ovipary occurs solely in the Peripatopsidae, often in regions with erratic food supply or unsettled climate. In these cases, the yolk-rich egg (biology), eggs measure 1.3 to 2.0 mm and are coated in a protective chitinous shell. Maternal care is unknown. *The majority of species are ovoviviparous: the medium-sized eggs, encased only by a double membrane, remain in the
uterus The uterus (from Latin ''uterus'', plural ''uteri'') or womb () is the organ in the reproductive system of most female mammals, including humans that accommodates the embryonic and fetal development of one or more embryos until birth. The ...
. The embryos do not receive food directly from the mother, but are supplied instead by the moderate quantity of yolk contained in the eggs—they are therefore described as lecithotrophic. The young emerge from the eggs only a short time before birth. This probably represents the velvet worm's original mode of reproduction, i.e., both oviparous and viviparous species developed from ovoviviparous species. *True live-bearing species are found in both families, particularly in tropical regions with a stable climate and regular food supply throughout the year. The embryos develop from eggs only micrometres in size and are nourished in the uterus by their mother, hence the description "matrotrophic". The supply of food takes place either via a secretion from the mother directly into the uterus or via a genuine tissue connection between the epithelium of the uterus and the developing embryo, known as a placenta. The former is found only outside the American continents, while the latter occurs primarily in America and the Caribbean and more rarely in the Old World. The gestation period can amount to up to 15 months, at the end of which the offspring emerge in an advanced stage of development. The embryos found in the uterus of a single female do not necessarily have to be of the same age; it is quite possible for there to be offspring at different stages of development and descended from different males. In some species, young tend to be released only at certain points in the year. A female can have between 1 and 23 offspring per year; development from fertilized ovum to adult takes between 6 and 17 months and does not have a larval stage. This is probably also the original mode of development. Velvet worms have been known to live for up to six years.


Ecology

The velvet worm's important predators are primarily various spiders and centipedes, along with rodents and birds, such as, in Central America, the clay-coloured thrush (''Turdus grayi''). In South America, Hemprichi's coral snake (''Micrurus hemprichii'') feeds almost exclusively on velvet worms. For defence, some species roll themselves reflexively into a spiral, while they can also fight off smaller opponents by ejecting slime. Various mites (Acari) are known to be ectoparasites infesting the skin of the velvet worm. Skin injuries are usually accompanied by bacterial infections, which are almost always fatal. The South African species ''Peripatopsis capensis'' has been inadvertently introduced to Santa Cruz Island (Galápagos), Santa Cruz Island in the Galapagos Islands, where it co-occurs with native velvet worms.


Conservation

The global conservation status of velvet worm species is difficult to estimate; many species are only known to exist at their type locality (the location at which they were first observed and described). The collection of reliable data is also hindered by low population densities, their typically nocturnal behaviour and possibly also as-yet undocumented seasonal influences and sexual dimorphism. To date, the only onychophorans evaluated by the IUCN are: *''Mesoperipatus tholloni'' (Data Deficient) *''
Plicatoperipatus jamaicensis ''Plicatoperipatus'' is a monospecific genus of velvet worm containing the single species ''Plicatoperipatus jamaicensis''. It is endemic to Jamaica. This species ranges from 25 mm to 65 mm in length. Males in this species have 35 pairs of legs ...
'' (Near Threatened) *''Peripatoides indigo'' (Vulnerable) *''Peripatoides suteri'' (Vulnerable) *''Peripatopsis alba'' (Vulnerable) *''Peripatopsis clavigera'' (Vulnerable) *''Macroperipatus insularis'' (Endangered) *''Leucopatus anophthalmus'' (Endangered) *''Opisthopatus roseus'' (Critically Endangered) *''Peripatopsis leonina'' (Critically Endangered) *''Speleoperipatus spelaeus'' (Critically Endangered) The primary threat comes from destruction and fragmentation of velvet worm habitat due to industrialisation, draining of wetlands, and slash-and-burn agriculture. Many species also have naturally low population densities and closely restricted geographic ranges; as a result, relatively small localised disturbances of important ecosystems can lead to the extinction of entire populations or species. Collection of specimens for universities or research institutes also plays a role on a local scale. There is a very pronounced difference in the protection afforded to velvet worms between regions: in some countries, such as South Africa, there are restrictions on both collecting and exporting, while in others, such as Australia, only export restrictions exist. Many countries offer no specific safeguards at all. Tasmania has a protection programme that is unique worldwide: one region of forest has its own velvet worm conservation plan, which is tailored to a particular velvet worm species.


Phylogeny

In their present forms, the velvet worms are probably very closely related to the arthropods, a very extensive taxon that incorporates, for instance, the crustaceans, insects, and arachnids. They share, among other things, an exoskeleton consisting of α-chitin and non-collagenous proteins; gonads and waste-elimination organs enclosed in true coelom tissue; an open blood system with a tubular heart situated at the rear; an abdominal cavity divided into pericardial and perivisceral cavities; respiration via tracheae; and similar embryonic development. Segmentation, with two body appendages per segment, is also a shared feature. However, the antennae, mandibles, and oral papillae of velvet worms are probably ''not'' homologous to the corresponding features in arthropods; i.e., they probably developed independently. Another closely related group are the comparatively obscure water bears (
Tardigrada Tardigrades (), known colloquially as water bears or moss piglets, are a phylum of eight-legged segmented micro-animals. They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them Kleiner Wasserbä ...
); however, due to their very small size, water bears have no need for – and hence lack – blood circulation and separate respiratory structures: shared characteristics that support common ancestry of velvet worms and arthropods. Together, the velvet worms, arthropods, and water bears form a monophyletic taxon, the
Panarthropoda Panarthropoda is a proposed animal clade containing the extant phyla Arthropoda, Tardigrada (water bears) and Onychophora (velvet worms). Panarthropods also include extinct marine legged worms known as lobopodians ("Lobopodia"), a paraphylet ...
, i.e., the three groups collectively cover all descendants of their last common ancestor. Due to certain similarities of form, the velvet worms were usually grouped with the water bears to form the taxon Protoarthropoda. This designation would imply that both velvet worms and water bears are not yet as highly developed as the arthropods. Modern systematic theories reject such conceptions of "primitive" and "highly developed" organisms and instead consider exclusively the historical relationships among the taxa. These relationships are not as yet fully understood, but it is considered probable that the velvet worms' sister groups form a taxon designated Tactopoda, thus: For a long time, velvet worms were also considered related to the annelids. They share, among other things, a worm-like body; a thin and flexible outer skin; a layered musculature; paired waste-elimination organs; as well as a simply constructed brain and simple eyes. Decisive, however, was the existence of segmentation in both groups, with the segments showing only minor specialisation. The parapodia appendages found in annelids therefore correspond to the stump feet of the velvet worms. Within the Articulata hypothesis developed by Georges Cuvier, the velvet worms therefore formed an evolutionary link between the annelids and the arthropods: worm-like precursors first developed parapodia, which then developed further into stub feet as an intermediate link in the ultimate development of the arthropods' appendages. Due to their structural conservatism, the velvet worms were thus considered "living fossils". This perspective was expressed paradigmatically in the statement by the French zoologist A. Vandel: :''Onychophorans can be considered highly evolved annelids, adapted to terrestrial life, which announced prophetically the Arthropoda. They are a lateral branch which has endured from ancient times until today, without important modifications.'' Modern taxonomy does not study criteria such as "higher" and "lower" states of development or distinctions between "main" and "side" branches—only family relationships indicated by cladistic methods are considered relevant. From this point of view, several common characteristics still support the Articulata hypothesis — segmented body; paired appendages on each segment; pairwise arrangement of waste-elimination organs in each segment; and above all, a rope-ladder-like nervous system based on a double nerve strand lying along the belly. An alternative concept, most widely accepted today, is the so-called Ecdysozoa hypothesis. This places the annelids and Panarthropoda in two very different groups: the former in the Lophotrochozoa and the latter in the Ecdysozoa. Mitochondrial gene sequences also provide support for this hypothesis. Proponents of this hypothesis assume that the aforementioned similarities between annelids and velvet worms either developed convergently or were primitive characteristics passed unchanged from a common ancestor to both the Lophotrochozoa and Ecdysozoa. For example, in the first case, the rope-ladder nervous system would have developed in the two groups independently, while in the second case, it is a very old characteristic, which does not imply a particularly close relationship between the annelids and Panarthropoda. The Ecdysozoa concept divides the taxon into two, the Panarthropoda into which the velvet worms are placed, and the sister group Cycloneuralia, containing the threadworms (Nematoda), horsehair worms (Nematomorpha) and three rather obscure groups: the mud dragons (Kinorhyncha); penis worms (Priapulida); and brush-heads (Loricifera). Particularly characteristic of the Cycloneuralia is a ring of "circumoral" nerves around the mouth opening, which the proponents of the Ecdysozoa hypothesis also recognise in modified form in the details of the nerve patterns of the Panarthropoda. Both groups also share a common skin-shedding mechanism ( ecdysis) and molecular biological similarities. One problem of the Ecdysozoa hypothesis is the velvet worms' subterminal position of their mouths: Unlike in the Cycloneuralia, the mouth is not at the front end of the body, but lies further back, under the belly. However, investigations into their developmental biology, particularly regarding the development of the head nerves, suggest that this was not always the case, and that the mouth was originally terminal (situated at the tip of the body). This is supported by the fossil record. The "stem-group arthropod" hypothesis is very widely accepted, but some trees suggest that the onychophorans may occupy a different position; their brain anatomy is more closely related to that of the chelicerates than to any other arthropod. The modern velvet worms form a monophyletic group, incorporating all the descendants of their common ancestor. Important common derivative characteristics (synapomorphy, synapomorphies) include, for example, the mandibles of the second body segment and the oral papillae and associated slime glands of the third; nerve strands extending along the underside with numerous cross-linkages per segment; and the special form of the tracheae. By 2011, some 180 modern species, comprising 49 genus, genera, had been described; the actual number of species is probably about twice this. According to more recent study, 82 species of Peripatidae and 115 species of Peripatopsidae have been described thus far. However, among the 197 species, 20 are nomen dubium, ''nomina dubia'', due to major taxonomic inconsistencies. The best-known is the type genus '' Peripatus'', which was described as early as 1825 and which, in English-speaking countries, stands representative for all velvet worms. All genera are assigned to one of two families, the distribution ranges of which do not overlap but are separated by arid areas or oceans: * The Peripatopsidae exhibit relatively many characteristics that are perceived as original or "primitive". The number of leg pairs in this family range from 13 (in ''
Ooperipatellus nanus ''Ooperipatellus nanus'' is a species of velvet worm in the family Peripatopsidae. This species is endemic to New Zealand and is found in the South Island. Taxonomy This species was first described by Hilke Ruhberg in 1985. Description ' ...
'') to 29 (in ''Paraperipatus papuensis''). Behind or between the last leg pair is the genital opening (
gonopore A gonopore, sometimes called a gonadopore, is a genital pore in many invertebrates. Hexapods, including insects have a single common gonopore, except mayflies, which have a pair of gonopores. More specifically, in the unmodified female it is t ...
). Both oviparous and ovoviviparous, as well as genuinely viviparous, species exist, although the peripatopsids essentially lack a placenta. Their distribution is circumaustral, encompassing Australasia, South Africa, and Chile. * The Peripatidae exhibit a range of derivative features. They are longer, on average, than the Peripatopsidae and also have more legs. The number of leg pairs in this family range from 19 (in ''Typhloperipatus williamsoni'') to 43 (in ''
Plicatoperipatus jamaicensis ''Plicatoperipatus'' is a monospecific genus of velvet worm containing the single species ''Plicatoperipatus jamaicensis''. It is endemic to Jamaica. This species ranges from 25 mm to 65 mm in length. Males in this species have 35 pairs of legs ...
''). The gonopore is always between the wikt:penultimate, penultimate leg pair. None of the peripatid species are oviparous, and the overwhelming majority are viviparous. The females of many viviparous species develop a placenta with which to provide the growing embryo with nutrients. Distribution of the peripatids is restricted to the tropical and subtropical zones; in particular, they inhabit Central America, northern
South America South America is a continent entirely in the Western Hemisphere and mostly in the Southern Hemisphere, with a relatively small portion in the Northern Hemisphere at the northern tip of the continent. It can also be described as the sout ...
, Gabon, Northeast India, and Southeast Asia.


Evolution

Certain fossils from the early Cambrian bear a striking resemblance to the velvet worms. These fossils, known collectively as the lobopodians, were marine and represent a grade from which arthropods, tardigrades, and Onychophora arose. Onychophorans are found in the Cambrian, Ordovician (possibly), Silurian and Pennsylvanian (geology), Pennsylvanian periods. Historically, all fossil Onychophora and lobopods were lumped into the taxon Xenusia, further subdivided by some authors to the Paleozoic Udeonychophora and the Mesozoic/Tertiary Ontonychophora; living Onychophora were termed Euonychophora. Importantly, few of the Cambrian fossils bear features that distinctively unite them with the Onychophora; none can be confidently assigned to the onychophoran crown or even stem group. The exceptions are ''Hallucigenia'' and related taxa such as ''Collinsium, Collinsium ciliosum'', which bear distinctly onychophoran-like claws. It is not clear when the transition to a terrestrial existence was made, but it is considered plausible that it took place between the Ordovician and late Silurian—approximately —via the intertidal zone. The low preservation potential of the non-mineralised Onychophora means that they have a sparse fossil record. Stem-group members include ''Helenodora'' (Carboniferous), ''Tertiapatus dominicanus'', and ''Succinipatopsis balticus'' (Tertiary). A Carboniferous fossil from Montceau-les-Mines, France, ''Antennipatus'' possesses clear onychophoran affinities, but its preservation prohibits differentiating between its placement on the stem or crown of the two extant families, or on the onychophoran stem-group. Crown group representatives are known only from amber—there is a single, partial specimen from the Cretaceous, and a more comprehensive record in Eocene deposits from . However, some of these amber-borne specimens lack slime papillae and separate feet, and thus may belong in the stem group. The vagaries of the preservation process can make fossils difficult to interpret. Experiments on the decay and compaction of onychophora demonstrate difficulties in interpreting fossils; certain parts of living onychophora are visible only in certain conditions: * The mouth may or may not be preserved; * The claws may be re-oriented or lost; * The leg width may increase or decrease; and * The mud may be mistaken for organs. More significantly, features seen in fossils may be artefacts of the preservation process: For instance, "shoulder pads" may simply be the second row of legs coaxially compressed onto the body; branching "antennae" may in fact be produced through decay.


References


External links


Flickr
*
Youtube
''The Slimy, Deadly Velvet Worm'', Smithsonian Channel * *Peripatus discussed on Radio New Zealand, RNZ ''Critter of the Week''
13 Nov 2015
{{Authority control Onychophorans, * Animal phyla Taxa named by Adolph Eduard Grube