Surface diffusion
   HOME

TheInfoList



OR:

Surface diffusion is a general process involving the motion of adatoms,
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s, and atomic clusters ( adparticles) at solid material surfaces.Oura, Lifshits, Saranin, Zotov, and Katayama 2003, p. 325 The process can generally be thought of in terms of particles jumping between adjacent
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
sites on a surface, as in figure 1. Just as in bulk
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical ...
, this motion is typically a thermally promoted process with rates increasing with increasing temperature. Many systems display diffusion behavior that deviates from the conventional model of nearest-neighbor jumps. Tunneling diffusion is a particularly interesting example of an unconventional mechanism wherein hydrogen has been shown to diffuse on clean
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
surfaces via the quantum tunneling effect. Various analytical tools may be used to elucidate surface diffusion mechanisms and rates, the most important of which are field ion microscopy and scanning tunneling microscopy.Oura, Lifshits, Saranin, Zotov, and Katayama 2003, p. 349 While in principle the process can occur on a variety of materials, most experiments are performed on crystalline metal surfaces. Due to experimental constraints most studies of surface diffusion are limited to well below the
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
of the substrate, and much has yet to be discovered regarding how these processes take place at higher temperatures. Surface diffusion rates and mechanisms are affected by a variety of factors including the strength of the surface-adparticle
bond Bond or bonds may refer to: Common meanings * Bond (finance), a type of debt security * Bail bond, a commercial third-party guarantor of surety bonds in the United States * Chemical bond, the attraction of atoms, ions or molecules to form chemical ...
, orientation of the surface lattice, attraction and repulsion between surface species and
chemical potential In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a speci ...
gradients. It is an important concept in surface phase formation,
epitaxial growth Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epit ...
, heterogeneous
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
, and other topics in
surface science Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid– liquid interfaces, solid– gas interfaces, solid–vacuum interfaces, and liquid– gas interfaces. It includes th ...
.Shustorovich 1991, p. 109 As such, the principles of surface diffusion are critical for the chemical production and
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
industries. Real-world applications relying heavily on these phenomena include
catalytic converter A catalytic converter is an exhaust emission control device that converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usual ...
s,
integrated circuits An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tin ...
used in electronic devices, and
silver halide A silver halide (or silver salt) is one of the chemical compounds that can form between the Chemical element, element silver (Ag) and one of the halogens. In particular, bromine (Br), chlorine (Cl), iodine (I) and fluorine (F) may each combine wi ...
salts used in
photographic film Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the crystals determine ...
.


Kinetics

Surface diffusion kinetics can be thought of in terms of adatoms residing at
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
sites on a 2D lattice, moving between adjacent (nearest-neighbor) adsorption sites by a jumping process. The jump rate is characterized by an attempt
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
and a
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ...
factor that dictates the probability of an attempt resulting in a successful jump. The attempt frequency ν is typically taken to be simply the
vibrational frequency A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 1013 Hz to approximately 1014 ...
of the adatom, while the thermodynamic factor is a Boltzmann factor dependent on temperature and Ediff, the
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potenti ...
barrier to diffusion. Equation 1 describes the relationship: : \Gamma = \nu e^ \qquad \text Where ''ν'' and ''Ediff'' are as described above, Γ is the jump or hopping rate, T is temperature, and ''kB'' is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constan ...
. Ediff must be smaller than the energy of desorption for diffusion to occur, otherwise desorption processes would dominate. Importantly, equation 1 tells us how strongly the jump rate varies with temperature. The manner in which diffusion takes place is dependent on the relationship between ''Ediff'' and ''kBT'' as is given in the thermodynamic factor: when ''Ediff < kBT'' the thermodynamic factor approaches unity and ''Ediff'' ceases to be a meaningful barrier to diffusion. This case, known as ''mobile diffusion'', is relatively uncommon and has only been observed in a few systems. For the phenomena described throughout this article, it is assumed that ''Ediff >> kBT'' and therefore Γ << ''ν''. In the case of Fickian diffusion it is possible to extract both the ''ν'' and ''Ediff'' from an Arrhenius plot of the logarithm of the diffusion coefficient, ''D'', versus 1/''T''. For cases where more than one diffusion mechanism is present (see below), there may be more than one ''Ediff'' such that the relative distribution between the different processes would change with temperature.
Random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
statistics describe the
mean squared displacement In statistical mechanics, the mean squared displacement (MSD, also mean square displacement, average squared displacement, or mean square fluctuation) is a measure of the deviation of the position of a particle with respect to a reference positio ...
of diffusing species in terms of the number of jumps ''N'' and the distance per jump ''a''. The number of successful jumps is simply Γ multiplied by the time allowed for diffusion, ''t''. In the most basic model only nearest-neighbor jumps are considered and ''a'' corresponds to the spacing between nearest-neighbor adsorption sites. The root mean squared displacement goes as: : \sqrt = a\sqrt \qquad \text The diffusion coefficient is given as: : D = \frac \qquad \text where z = 2 for 1D diffusion as would be the case for in-channel diffusion, z = 4 for 2D diffusion, and z = 6 for 3D diffusion.


Regimes

There are four different general schemes in which diffusion may take place. Tracer diffusion and chemical diffusion differ in the level of adsorbate coverage at the surface, while intrinsic diffusion and mass transfer diffusion differ in the nature of the diffusion environment. Tracer diffusion and intrinsic diffusion both refer to systems where adparticles experience a relatively homogeneous environment, whereas in chemical and mass transfer diffusion adparticles are more strongly affected by their surroundings. *Tracer diffusion describes the motion of individual adparticles on a surface at relatively low coverage levels. At these low levels (< 0.01 monolayer), particle interaction is low and each particle can be considered to move independently of the others. The single atom diffusing in figure 1 is a nice example of tracer diffusion. *Chemical diffusion describes the process at higher level of coverage where the effects of attraction or repulsion between adatoms becomes important. These interactions serve to alter the mobility of adatoms. In a crude way, figure 3 serves to show how adatoms may interact at higher coverage levels. The adatoms have no "choice" but to move to the right at first, and adjacent adatoms may block adsorption sites from one another. *Intrinsic diffusion occurs on a uniform surface (e.g. lacking steps or vacancies) such as a single terrace, where no adatom traps or sources are present. This regime is often studied using field ion microscopy, wherein the terrace is a sharp sample tip on which an adparticle diffuses. Even in the case of a clean terrace the process may be influenced by non-uniformity near the edges of the terrace. *Mass transfer diffusion takes place in the case where adparticle sources and traps such as kinks, steps, and vacancies are present. Instead of being dependent only on the jump potential barrier Ediff, diffusion in this regime is now also dependent on the formation energy of mobile adparticles. The exact nature of the diffusion environment therefore plays a role in dictating the diffusion rate, since the formation energy of an adparticle is different for each type of surface feature as is described in the
Terrace Ledge Kink model In chemistry, the Terrace Ledge Kink model (TLK), which is also referred to as the Terrace Step Kink model (TSK), describes the thermodynamics of crystal surface formation and transformation, as well as the energetics of surface defect formation. I ...
.


Anisotropy

Orientational anisotropy takes the form of a difference in both diffusion rates and mechanisms at the various surface orientations of a given material. For a given crystalline material each Miller Index plane may display unique diffusion phenomena. Close packed surfaces such as the fcc (111) tend to have higher diffusion rates than the correspondingly more "open" faces of the same material such as fcc (100). Directional anisotropy refers to a difference in diffusion mechanism or rate in a particular direction on a given crystallographic plane. These differences may be a result of either anisotropy in the surface lattice (e.g. a rectangular lattice) or the presence of steps on a surface. One of the more dramatic examples of directional anisotropy is the diffusion of adatoms on channeled surfaces such as fcc (110), where diffusion along the channel is much faster than diffusion across the channel.


Mechanisms


Adatom diffusion

Diffusion of adatoms may occur by a variety of mechanisms. The manner in which they diffuse is important as it may dictate the kinetics of movement, temperature dependence, and overall mobility of surface species, among other parameters. The following is a summary of the most important of these processes: *Hopping or jumping is conceptually the most basic mechanism for diffusion of adatoms. In this model, the adatoms reside on adsorption sites on the surface lattice. Motion occurs through successive jumps to adjacent sites, the number of which depends on the nature of the surface lattice. Figures 1 and 3 both display adatoms undergoing diffusion via the hopping process. Studies have shown the presence of metastable transition states between adsorption sites wherein it may be possible for adatoms to temporarily reside. *Atomic exchange involves exchange between an adatom and an adjacent atom within the surface lattice. As shown in figure 4, after an atomic exchange event the adatom has taken the place of a surface atom and the surface atom has been displaced and has now become an adatom. This process may take place in both heterodiffusion (e.g. Pt adatoms on Ni) and self-diffusion (e.g. Pt adatoms on Pt). It is still unclear from a theoretical point of view why the atomic exchange mechanism is more predominant in some systems than in others. Current theory points towards multiple possibilities, including tensile surface stresses, surface relaxation about the adatom, and increased stability of the intermediate due to the fact that both atoms involved maintain high levels of coordination throughout the process. *Tunneling diffusion is a physical manifestation of the quantum tunneling effect involving particles tunneling across diffusion barriers. It can occur in the case of low diffusing particle
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
and low Ediff, and has been observed in the case of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
diffusion on
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
surfaces. The phenomenon is unique in that in the regime where the tunneling mechanism dominates, the diffusion rate is nearly temperature-independent. *Vacancy diffusion can occur as the predominant method of surface diffusion at high coverage levels approaching complete coverage. This process is akin to the manner in which pieces slide around in a " sliding puzzle". It is very difficult to directly observe vacancy diffusion due to the typically high diffusion rates and low vacancy
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', ''number concentration'', ...
. Figure 5 shows the basic theme of this mechanism in an albeit oversimplified manner. Recent theoretical work as well as experimental work performed since the late 1970s has brought to light a remarkable variety of surface diffusion phenomena both with regard to kinetics as well as to mechanisms. Following is a summary of some of the more notable phenomena: *Long jumps consist of adatom displacement to a non-nearest-neighbor adsorption site. They may include double, triple, and longer jumps in the same direction as a nearest-neighbor jump would travel, or they may be in entirely different directions as shown in figure 6. They have been predicted by
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may ...
to exist in many different systems, and have been shown by experiment to take place at temperatures as low as 0.1 Tm (melting temperature). In some cases data indicate long jumps dominating the diffusion process over single jumps at elevated temperatures; the phenomena of variable jump lengths is expressed in different characteristic distributions of atomic displacement over time (see figure 7). *Rebound jumps have been shown by both experiment and simulations to take place in certain systems. Since the motion does not result in a net displacement of the adatom involved, experimental evidence for rebound jumps again comes from statistical interpretation of atomic distributions. A rebound jump is shown in figure 6. The figure is slightly misleading, however, as rebound jumps have only been shown experimentally to take place in the case of 1D diffusion on a channeled surface (in particular, the bcc (211) face of tungsten). *Cross-channel diffusion can occur in the case of channeled surfaces. Typically in-channel diffusion dominates due to the lower energy barrier for diffusion of this process. In certain cases cross-channel has been shown to occur, taking place in a manner similar to that shown in figure 8. The intermediate "dumbbell" position may lead to a variety of final adatom and surface atom displacements. *Long-range atomic exchange is a process involving an adatom inserting into the surface as in the normal atomic exchange mechanism, but instead of a nearest-neighbor atom it is an atom some distance further from the initial adatom that emerges. Shown in figure 9, this process has only been observed in molecular dynamics simulations and has yet to be confirmed experimentally. In spite of this long range atomic exchange, as well as a variety of other exotic diffusion mechanisms, are anticipated to contribute substantially at temperatures currently too high for direct observation.


Cluster diffusion

Cluster diffusion involves motion of atomic clusters ranging in size from
dimer Dimer may refer to: * Dimer (chemistry), a chemical structure formed from two similar sub-units ** Protein dimer, a protein quaternary structure ** d-dimer * Dimer model, an item in statistical mechanics, based on ''domino tiling'' * Julius Dimer ( ...
s to islands containing hundreds of atoms. Motion of the cluster may occur via the displacement of individual atoms, sections of the cluster, or the entire cluster moving at once. All of these processes involve a change in the cluster’s
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
. *Individual mechanisms are those that involve movement of one atom at a time. **Edge diffusion involves movement of adatoms or vacancies at edge or kink sites. As shown in figure 10, the mobile atom maintains its proximity to the cluster throughout the process. **Evaporation-condensation involves atoms “ evaporating” from the cluster onto a terrace accompanied by “
condensation Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapo ...
” of terrace adatoms onto the cluster leading to a change in the cluster’s center of mass. While figure 10 appears to indicate the same atom evaporating from and condensing on the cluster, it may in fact be a different atom condensing from the 2D gas. **Leapfrog diffusion is similar to edge diffusion, but where the diffusing atom actually moves atop the cluster before settling in a different location from its starting position. **Sequential displacement refers to the process involving motion one atom at a time, moving to free nearest-neighbor sites. *Concerted mechanisms are those that involve movement of either sections of the cluster or the entire cluster all at once. **Dislocation diffusion occurs when adjacent sub-units of a cluster move in a row-by-row fashion through displacement of a
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to s ...
. As shown in figure 11(a) the process begins with nucleation of the dislocation followed by what is essentially sequential displacement on a concerted basis. **Glide diffusion refers to the concerted motion of an entire cluster all at once (see figure 11(b)). **Reptation is a snake-like movement (hence the name) involving sequential motion of cluster sub-units (see figure 11(c)). **Shearing is a concerted displacement of a sub-unit of atoms within a cluster (see figure 11(d)). *Size-dependence: the rate of cluster diffusion has a strong dependence on the size of the cluster, with larger cluster size generally corresponding to slower diffusion. This is not, however, a universal trend and it has been shown in some systems that the diffusion rate takes on a periodic tendency wherein some larger clusters diffuse faster than those smaller than them.Oura, Lifshits, Saranin, Zotov, and Katayama 2003, p. 341-343


Surface diffusion and heterogeneous catalysis

Surface diffusion is a critically important concept in heterogeneous catalysis, as reaction rates are often dictated by the ability of reactants to "find" each other at a catalyst surface. With increased temperature adsorbed molecules, molecular fragments, atoms, and clusters tend to have much greater mobility (see equation 1). However, with increased temperature the lifetime of adsorption decreases as the factor kBT becomes large enough for the adsorbed species to overcome the barrier to desorption, Q (see figure 2). Reaction
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws ...
aside because of the interplay between increased rates of diffusion and decreased lifetime of adsorption, increased temperature may in some cases decrease the overall rate of the reaction.


Experimental

Surface diffusion may be studied by a variety of techniques, including both direct and indirect observations. Two experimental techniques that have proved very useful in this area of study are field ion microscopy and scanning tunneling microscopy. By visualizing the displacement of atoms or clusters over time, it is possible to extract useful information regarding the manner in which the relevant species diffuse-both mechanistic and rate-related information. In order to study surface diffusion on the atomistic scale it is unfortunately necessary to perform studies on rigorously clean surfaces and in ultra high vacuum (UHV) conditions or in the presence of small amounts of inert gas, as is the case when using He or Ne as imaging gas in field-ion microscopy experiments.


See also

* Surface engineering *
Surface science Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid– liquid interfaces, solid– gas interfaces, solid–vacuum interfaces, and liquid– gas interfaces. It includes th ...
*
False diffusion False diffusion is a type of error observed when the upwind scheme is used to approximate the convection term in convection–diffusion equations. The more accurate central difference scheme can be used for the convection term, but for grids w ...


References


Cited works

*G. Antczak, G. Ehrlich. ''Surface Science Reports'' 62 (2007), 39-61. (Review) * * {{DEFAULTSORT:Surface Diffusion Materials science Surface science