Organ printing
   HOME

TheInfoList



OR:

Organ printing utilizes techniques similar to conventional
3D printing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
where a computer model is fed into a printer that lays down successive layers of
plastic Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adapta ...
s or wax until a 3D object is produced. In the case of organ printing, the material being used by the printer is a
biocompatible Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
plastic. The biocompatible plastic forms a scaffold that acts as the skeleton for the
organ Organ may refer to: Biology * Organ (biology), a part of an organism Musical instruments * Organ (music), a family of keyboard musical instruments characterized by sustained tone ** Electronic organ, an electronic keyboard instrument ** Hammond ...
that is being printed. As the plastic is being laid down, it is also seeded with human cells from the patient's organ that is being printed for. After printing, the organ is transferred to an incubation chamber to give the cells time to grow. After a sufficient amount of time, the organ is implanted into the patient. The ultimate goal of organ printing is to create organs that can fully integrate into the human body as if they had been there all along. Successful organ printing has the potential to impact several industries. These include
artificial organs An artificial organ is a human made organ device or tissue that is implanted or integrated into a human — interfacing with living tissue — to replace a natural organ, to duplicate or augment a specific function or functions so the patient ...
organ transplants Organ transplantation is a medical procedure in which an organ is removed from one body and placed in the body of a recipient, to replace a damaged or missing organ. The donor and recipient may be at the same location, or organs may be transpor ...
, pharmaceutical research, and the training of
physician A physician (American English), medical practitioner (Commonwealth English), medical doctor, or simply doctor, is a health professional who practices medicine, which is concerned with promoting, maintaining or restoring health through th ...
s and
surgeon In modern medicine, a surgeon is a medical professional who performs surgery. Although there are different traditions in different times and places, a modern surgeon usually is also a licensed physician or received the same medical training as ...
s.


History

The field of organ printing stemmed from research in the area of
stereolithography Stereolithography (SLA or SL; also known as vat photopolymerisation, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a lay ...
, the basis for the practice of 3D printing that was invented in 1984. In this early era of 3D printing, it was not possible to create lasting objects because the materials that were being used were not very sturdy. Therefore, in the early days, 3D printing was simply used a way to model potential end products that would eventually be made from different materials under more traditional techniques. In the beginning of the 1990s,
nanocomposite Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. The id ...
s were developed that allowed 3D printed objects to be more durable, permitting 3D printed objects to be used for more than just models. It was around this time that those in the medical field began considering 3D printing as an avenue for generating artificial organs. By the late 1990s, medical researchers were searching for biocompatible materialss that could be used in 3D printing. The concept of bioprinting was first demonstrated in 1988. At this time, a researcher used a modified HP
inkjet printer Inkjet printing is a type of computer printing that recreates a digital image by propelling droplets of ink onto paper and plastic substrates. Inkjet printers were the most commonly used type of printer in 2008, and range from small inexpensi ...
to deposit
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
using cytoscribing technology. Progress continued in 1999 when the first
artificial organ An artificial organ is a human made organ device or tissue that is implanted or integrated into a human — interfacing with living tissue — to replace a natural organ, to duplicate or augment a specific function or functions so the patient m ...
made using bioprinting was printed by a team of scientist leads by Dr.
Anthony Atala Anthony Atala, M.D., (born July 14, 1958) is an American bioengineer, urologist, and pediatric surgeon. He is the W.H. Boyce professor of urology, the founding director of the Wake Forest Institute for Regenerative Medicine, and the chair of th ...
at the
Wake Forest Institute for Regenerative Medicine The Wake Forest Institute for Regenerative Medicine (WFIRM) is a research institute affiliated with Wake Forest School of Medicine and located in Winston-Salem, North Carolina, United States WFIRM's goal is to apply the principles of regenerative ...
. The scientists at Wake Forest printed an artificial scaffold for a human
bladder The urinary bladder, or simply bladder, is a hollow organ in humans and other vertebrates that stores urine from the kidneys before disposal by urination. In humans the bladder is a distensible organ that sits on the pelvic floor. Urine en ...
and then seeded the scaffold with
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
from their patient. Using this method, they were able to grow a functioning
organ Organ may refer to: Biology * Organ (biology), a part of an organism Musical instruments * Organ (music), a family of keyboard musical instruments characterized by sustained tone ** Electronic organ, an electronic keyboard instrument ** Hammond ...
and ten years after implantation the patient had no serious complications. After the bladder at Wake Forest, strides were taken towards printing other organs. In 2002, a miniature, fully functional
kidney The kidneys are two reddish-brown bean-shaped organs found in vertebrates. They are located on the left and right in the retroperitoneal space, and in adult humans are about in length. They receive blood from the paired renal arteries; blo ...
was printed. In 2003, Dr. Thomas Boland from
Clemson University Clemson University () is a public land-grant research university in Clemson, South Carolina. Founded in 1889, Clemson is the second-largest university in the student population in South Carolina. For the fall 2019 semester, the university enr ...
patented the use of inkjet printing for cells. This process utilized a modified spotting system for the deposition of cells into organized 3D matrices placed on a substrate. This printer allowed for extensive research into bioprinting and suitable biomaterials. For instance, since these initial findings, the 3D printing of biological structures has been further developed to encompass the production of tissue and organ structures, as opposed to cell matrices. Additionally, more techniques for printing, such as extrusion bioprinting, have been researched and subsequently introduced as a
means of production The means of production is a term which describes land, labor and capital that can be used to produce products (such as goods or services); however, the term can also refer to anything that is used to produce products. It can also be used as a ...
. In 2004, the field of bioprinting was drastically changed by yet another new bioprinter. This new printer was able to use live human cells without having to build an artificial scaffold first. In 2009, Organovo used this novel technology to create the first commercially available bioprinter. Soon after, Organovo's bioprinter was used to develop a
biodegradable Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegrada ...
blood vessel The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide awa ...
, the first of its kind, without a cell scaffold. In the 2010s and beyond, further research has been put forth into producing other organs, such as the
liver The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it i ...
and
heart valve A heart valve is a one-way valve that allows blood to flow in one direction through the chambers of the heart. Four valves are usually present in a mammalian heart and together they determine the pathway of blood flow through the heart. A heart ...
s, and tissues, such as a blood-borne network, via 3D printing. In 2019, scientists in
Israel Israel (; he, יִשְׂרָאֵל, ; ar, إِسْرَائِيل, ), officially the State of Israel ( he, מְדִינַת יִשְׂרָאֵל, label=none, translit=Medīnat Yīsrāʾēl; ), is a country in Western Asia. It is situated ...
made a major breakthrough when they were able to print a rabbit-sized
heart The heart is a muscular Organ (biology), organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as ca ...
with a network of blood vessels that were capable of contracting like natural blood vessels. The printed heart had the correct anatomical structure and function compared to real hearts. This breakthrough represented a real possibility of printing fully functioning human organs. In fact, scientists at the Warsaw Foundation for Research and Development of Science in
Poland Poland, officially the Republic of Poland, is a country in Central Europe. It is divided into 16 administrative provinces called voivodeships, covering an area of . Poland has a population of over 38 million and is the fifth-most populou ...
have been working on creating a fully artificial
pancreas The pancreas is an organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine gland, i.e. it has both an ...
using bioprinting technology. As of today, these scientists have been able to develop a functioning prototype. This is a growing field and much research is still being conducted.


3D printing techniques

3D printing for the manufacturing of artificial organs has been a major topic of study in
biological engineering Biological engineering or bioengineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically-viable products. Biological engineering employs knowledge and expertise from a number o ...
. As the
rapid manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
techniques entailed by 3D printing become increasingly efficient, their applicability in artificial organ synthesis has grown more evident. Some of the primary benefits of 3D printing lie in its capability of mass-producing
scaffold Scaffolding, also called scaffold or staging, is a temporary structure used to support a work crew and materials to aid in the construction, maintenance and repair of buildings, bridges and all other man-made structures. Scaffolds are widely used ...
structures, as well as the high degree of anatomical precision in scaffold products. This allows for the creation of constructs that more effectively resemble the
microstructure Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymers ...
of a natural organ or tissue structure. Organ printing using 3D printing can be conducted using a variety of techniques, each of which confers specific advantages that can be suited to particular types of organ production.


Sacrificial writing into functional tissue (SWIFT)

Sacrificial writing into function tissue (SWIFT) is a method of organ printing where living cells are packed tightly to mimic the density that occurs in the human body. While packing, tunnels are carved to mimic blood vessels and oxygen and essential nutrients are delivered via these tunnels. This technique pieces together other methods that only packed cells or created vasculature. SWIFT combines both and is an improvement that brings researchers closer to creating functional artificial organs.


Stereolithographic (SLA) 3D bioprinting

This method of organ printing uses spatially controlled light or laser to create a 2D pattern that is layered through a selective photopolymerization in the bio-ink reservoir. A 3D structure can then be built in layers using the 2D pattern. Afterwards the bio-ink is removed from the final product. SLA bioprinting allows for the creation of complex shapes and internal structures. The feature resolution for this method is extremely high and the only disadvantage is the scarcity of resins that are biocompatible.


Drop-based bioprinting (Inkjet)

Drop-based bioprinting makes cellular developments utilizing droplets of an assigned material, which has oftentimes been combined with a cell line. Cells themselves can also be deposited in this manner with or without polymer. When printing polymer scaffolds using these methods, each drop starts to polymerize upon contact with the substrate surface and merge into a larger structure as droplets start to coalesce. Polymerization can happen through a variety of methods depending on the polymer used. For instance, alginate polymerization is started by calcium ions in the substrate, which diffuse into the liquified bioink and permit for the arrangement of a strong gel. Drop-based bioprinting is commonly utilized due to its productive speed. However, this may make it less appropriate for more complicated organ structures.


Extrusion bioprinting

Extrusion bioprinting includes the consistent statement of a specific printing fabric and cell line from an extruder, a sort of portable print head. This tends to be a more controlled and gentler handle for fabric or cell statement, and permits for more noteworthy cell densities to be utilized within the development of 3D tissue or organ structures. In any case, such benefits are set back by the slower printing speeds involved by this procedure. Extrusion bioprinting is frequently coupled with UV light, which photopolymerizes the printed fabric to create a more steady, coordinated construct.


Fused deposition modeling

Fused deposition modeling Fused filament fabrication (FFF), also known as fused deposition modeling (with the trademarked acronym FDM), or called ''filament freeform fabrication'', is a 3D printing process that uses a continuous filament of a thermoplastic material. Filam ...
(FDM) is more common and inexpensive compared to selective laser sintering. This printer uses a printhead that is similar in structure to an inkjet printer; however, ink is not used. Plastic beads are heated at high temperature and released from the printhead as it moves, building the object in thin layers. A variety of plastics can be used with FDM printers. Additionally, most of the parts printed by FDM are typically composed from the same
thermoplastic A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
s that are utilized in tradition
injection molding Injection moulding (U.S. spelling: injection molding) is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals (for ...
or machining techniques. Due to this, these parts have analogous durability, mechanical properties, and stability characteristics. Precision control allows for a consistent release amount and specific location deposition for each layer contributing to the shape. As the heated plastic is deposited from the printhead, it fuses or bonds to the layers below. As each layer cools, they harden and gradually take hold of the solid shape intended to be created as more layers are contributed to the structure.


Selective laser sintering

Selective laser sintering (SLS) uses powdered material as the substrate for printing new objects. SLS can be used to create metal, plastic, and ceramic objects. This technique uses a laser controlled by a computer as the power source to sinter powdered material. The laser traces a cross-section of the shape of the desired object in the powder, which fuses it together into a solid form. A new layer of powder is then laid down and the process repeats itself, building each layer with every new application of powder, one by one, to form the entirety of the object. One of the advantages of SLS printing is that it requires very little additional tooling, i.e. sanding, once the object is printed. Recent advances in organ printing using SLS include 3D constructs of
craniofacial Craniofacial (''cranio-'' combining form meaning head or skull + ''-facial'' combining form referring to the facial structures grossly) is an adjective referring to the parts of the head enclosing the brain and the face. The term is typically used ...
implants as well as scaffolds for cardiac tissue engineering.


Printing materials

Printing materials must fit a broad spectrum of criteria, one of the foremost being
biocompatibility Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
. The resulting scaffolds formed by 3D printed materials should be physically and chemically appropriate for
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation r ...
. Biodegradability is another important factor, and insures that the artificially formed structure can be broken down upon successful transplantation, to be replaced by a completely natural cellular structure. Due to the nature of 3D printing, materials used must be customizable and adaptable, being suited to wide array of cell types and structural conformations.


Natural polymers

Materials for 3D printing usually consist of
alginate Alginic acid, also called algin, is a naturally occurring, edible polysaccharide found in brown algae. It is hydrophilic and forms a viscous gum when hydrated. With metals such as sodium and calcium, its salts are known as alginates. Its colour ...
or
fibrin Fibrin (also called Factor Ia) is a fibrous, non-globular protein involved in the clotting of blood. It is formed by the action of the protease thrombin on fibrinogen, which causes it to polymerize. The polymerized fibrin, together with pl ...
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s that have been integrated with
cellular adhesion Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indire ...
molecules, which support the physical attachment of cells. Such polymers are specifically designed to maintain structural stability and be receptive to cellular integration. The term ''bio-ink'' has been used as a broad classification of materials that are compatible with 3D bioprinting.
Hydrogel A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
alginates have emerged as one of the most commonly used materials in organ printing research, as they are highly customizable, and can be fine-tuned to simulate certain mechanical and biological properties characteristic of natural tissue. The ability of hydrogels to be tailored to specific needs allows them to be used as an adaptable scaffold material, that are suited for a variety of tissue or organ structures and
physiological condition Physiological condition or, more often "physiological conditions" is a term used in biology, biochemistry, and medicine. It refers to conditions of the external or internal milieu that may occur in nature for that organism or cell system, in contr ...
s. A major challenge in the use of alginate is its stability and slow degradation, which makes it difficult for the artificial gel scaffolding to be broken down and replaced with the implanted cells' own
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide s ...
. Alginate hydrogel that is suitable for extrusion printing is also often less structurally and mechanically sound; however, this issue can be mediated by the incorporation of other
biopolymer Biopolymers are natural polymers produced by the cells of living organisms. Like other polymers, biopolymers consist of monomeric units that are covalently bonded in chains to form larger molecules. There are three main classes of biopolymers, ...
s, such as
nanocellulose Nanocellulose is a term referring to nano-structured cellulose. This may be either cellulose nanocrystal (CNC or NCC), cellulose nanofibers (CNF) also called nanofibrillated cellulose (NFC), or bacterial nanocellulose, which refers to nano-struc ...
, to provide greater stability. The properties of the alginate or mixed-polymer bioink are tunable and can be altered for different applications and types of organs. Other natural polymers that have been used for tissue and 3D organ printing include
chitosan Chitosan is a linear polysaccharide composed of randomly distributed β-(1→4)-linked D-glucosamine (deacetylated unit) and ''N''-acetyl-D-glucosamine (acetylated unit). It is made by treating the chitin shells of shrimp and other crustacean ...
, hydroxyapatite (HA),
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
, and
gelatin Gelatin or gelatine (from la, gelatus meaning "stiff" or "frozen") is a translucent, colorless, flavorless food ingredient, commonly derived from collagen taken from animal body parts. It is brittle when dry and rubbery when moist. It may also ...
. Gelatin is a thermosensitive polymer with properties exhibiting excellent wear
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
, biodegradability, biocompatibility, as well as a low immunologic rejection. These qualities are advantageous and result in high acceptance of the 3D bioprinted organ when implanted in vivo.


Synthetic Polymers

Synthetic polymers are human made through chemical reactions of
monomer In chemistry, a monomer ( ; '' mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization. Classification ...
s. Their mechanical properties are favorable in that their molecular weights can be regulated from low to high based on differing requirements. However, their lack of functional groups and structural complexity has limited their usage in organ printing. Current synthetic polymers with excellent 3D printability and in vivo tissue compatibility, include polyethylene glycol (PEG), poly(lactic-glycolic acid) (PLGA), and polyurethane (PU). PEG is a biocompatible, nonimmunogenic synthetic
polyether In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula , where R and R′ represent the alkyl or aryl groups. Ethers can again be ...
that has tunable mechanical properties for use in 3D bioprinting. Though PEG has been utilized in various 3D printing applications, the lack of cell-adhesive domains has limited further use in organ printing. PLGA, a synthetic
copolymer In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are ...
, is widely familiar in living creatures, such as animals, humans, plants, and
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in old ...
s. PLGA is used in conjunction with other polymers to create different material systems, including PLGA-gelatin, PLGA-collagen, all of which enhance mechanical properties of the material, biocompatible when placed
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and p ...
, and have tunable biodegradability. PLGA has most often been used in printed constructs for
bone A bone is a rigid organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red and white blood cells, store minerals, provide structure and support for the body, ...
, liver, and other large organ regeneration efforts. Lastly, PU is unique in that it can be classified into two groups: biodegradable or non-biodegradable. It has been used in the field of bioprinting due to its excellent mechanical and bioinert properties. An application of PU would be inanimate
artificial heart An artificial heart is a device that replaces the heart. Artificial hearts are typically used to bridge the time to heart transplantation, or to permanently replace the heart in the case that a heart transplant (from a deceased human or, exper ...
s; however, using existing 3D bioprinters, this polymer cannot be printed. A new
elastomer An elastomer is a polymer with viscoelasticity (i.e. both viscosity and Elasticity (physics), elasticity) and with weak intermolecular forces, generally low Young's modulus and high Deformation (mechanics), failure strain compared with other mate ...
ic PU was created composed of PEG and polycaprolactone (PCL)
monomer In chemistry, a monomer ( ; '' mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization. Classification ...
s. This new material exhibits excellent biocompatibility, biodegradability, bioprintability, and biostability for use in complex bioartificial organ printing and manufacturing. Due to high vascular and neural network construction, this material can be applied to organ printing in a variety of complex ways, such as the
brain A brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as Visual perception, vision. I ...
, heart,
lung The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of ...
, and kidney.


Natural-synthetic hybrid polymers

Natural-synthetic hybrid polymers are based on the
synergic Synergy is an interaction or cooperation giving rise to a whole that is greater than the simple sum of its parts. The term ''synergy'' comes from the Attic Greek word συνεργία ' from ', , meaning "working together". History In Christian ...
effect between synthetic and biopolymeric constituents. Gelatin-methacryloyl (GelMA) has become a popular biomaterial in the field of bioprinting. GelMA has shown it has viable potential as a bioink material due to its suitable biocompatibility and readily tunable psychochemical properties. Hyaluronic acid (HA)-PEG is another natural-synthetic hybrid polymer that has proven to be very successful in bioprinting applications. HA combined with synthetic polymers aid in obtaining more stable structures with high cell viability and limited loss in mechanical properties after printing. A recent application of HA-PEG in bioprinting is the creation of artificial liver. Lastly, a series of biodegradable polyurethane (PU)-gelatin hybrid polymers with tunable mechanical properties and efficient degradation rates have been implemented in organ printing. This hybrid has the ability to print complicated structures such as a
nose A nose is a protuberance in vertebrates that houses the nostrils, or nares, which receive and expel air for respiration alongside the mouth. Behind the nose are the olfactory mucosa and the sinuses. Behind the nasal cavity, air next passe ...
-shaped construct. All of the polymers described above have the potential to be manufactured into implantable, bioartificial organs for purposes including, but not limited to, customized organ restoration,
drug screening A drug test is a technical analysis of a biological specimen, for example urine, hair, blood, breath, sweat, or oral fluid/saliva—to determine the presence or absence of specified parent drugs or their metabolites. Major applications of drug ...
, as well as
metabolic Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
model analysis.


Cell Sources

The creation of a complete organ often requires incorporation of a variety of different cell types, arranged in distinct and patterned ways. One advantage of 3D-printed organs, compared to traditional transplants, is the potential to use cells derived from the patient to make the new organ. This significantly decreases the likelihood of transplant rejection, and may remove the need for
immunosuppressive drugs Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent activity of the immune system. Classification Immunosuppressive drugs can be classified into ...
after transplant, which would reduce the health risks of transplants. However, since it may not always be possible to collect all the needed cell types, it may be necessary to collect
adult stem cell Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells (from Greek σωματικóς, ...
s or induce pluripotency in collected tissue. This involves resource-intensive cell growth and differentiation and comes with its own set of potential health risks, since
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation r ...
in a printed organ occurs outside the body and requires external application of growth factors. However, the ability of some tissues to self-organize into differentiated structures may provide a way to simultaneously construct the tissues and form distinct cell populations, improving the efficacy and functionality of organ printing.


Types of printers and processes

The types of printers used for organ printing include: * Inkjet printer * Multi-nozzle * Hybrid printer * Electrospinning * Drop-on-demand These printers are used in the methods described previously. Each printer requires different materials and has its own advantages and limitations.


Applications


Organ donation

Currently, the sole method for treatment for those in
organ failure Organ dysfunction is a condition where an organ does not perform its expected function. Organ failure is organ dysfunction to such a degree that normal homeostasis cannot be maintained without external clinical intervention. It is not a diagnosis ...
is to await a transplant from a living or recently deceased donor. In the United States alone, there are over 100,000 patients on the organ transplant list waiting for donor organs to become available. Patients on the donor list can wait days, weeks, months, or even years for a suitable organ to become available. The average wait time for some common organ transplants are as follows: four months for a heart or lung, eleven months for a liver, two years for a pancreas, and five years for a kidney. This is a significant increase from the 1990s, when a patient could wait as little as five weeks for a heart. These extensive wait times are due to a shortage of organs as well as the requirement for finding an organ that is suitable for the recipient. An organ is deemed suitable for a patient based on
blood type A blood type (also known as a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates ...
, comparable body size between donor and recipient, the severity of the patient's medical condition, the length of time the patient has been waiting for an organ, patient availability (i.e. ability to contact patient, if patient has an infection), the proximity of the patient to the donor, and the viability time of the donor organ. In the United States, 20 people die everyday waiting for organs. 3D organ printing has the potential to remove both these issues; if organs could be printed as soon as there is need, there would be no shortage. Additionally, seeding printed organs with a patient's own cells would eliminate the need to screen donor organs for compatibility.


Physician and surgical training

Surgical usage of 3D printing has evolved from printing surgical instrumentation to the development of patient-specific technologies for total joint replacements, dental implants, and
hearing aid A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss. Hearing aids are classified as medical devices in most countries, and regulated by the respective regulations. Small audio amplifiers s ...
s. In the field of organ printing, applications can be applied for patients and surgeons. For instance, printed organs have been used to model structure and injury to better understand the
anatomy Anatomy () is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science that deals with the structural organization of living things. It is an old science, having i ...
and discuss a treatment regime with patients. For these cases, the functionality of the organ is not required and is used for proof-of-concept. These model organs provide advancement for improving surgical techniques, training inexperienced surgeons, and moving towards patient-specific treatments.


Pharmaceutical research

3D organ printing technology permits the fabrication of high degrees of complexity with great reproducibility, in a fast and cost-effective manner. 3D printing has been used in pharmaceutical research and fabrication, providing a transformative system allowing precise control of droplet size and dose,
personalized medicine Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on the ...
, and the production of complex drug-release profiles. This technology calls for implantable
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to dr ...
devices, in which the drug is injected into the 3D printed organ and is released once in vivo. Also, organ printing has been used as a transformative tool for in vitro testing. The printed organ can be utilized in discovery and dosage research upon drug-release factors.


Organ-on-a-chip

Organ printing technology can also be combined with microfluidic technology to develop organs-on-chips. These organs-on-chips have the potential to be used for disease models, aiding in drug discovery, and performing high-throughput assays. Organ-on-chips work by providing a 3D model that imitates the natural extracellular matrix, allowing them to display realistic responses to drugs. Thus far, research has been focused on developing liver-on-a-chip and heart-on-a-chip, but there exists the potential to develop an entire body-on-a-chip model. By combining 3D printed organs, researchers are able to create a body-on-a-chip. The heart-on-a-chip model has already been used to investigate how several drugs with heart rate-based negative side effects, such as the chemotherapeutic drug
doxorubicin Doxorubicin, sold under the brand name Adriamycin among others, is a chemotherapy medication used to treat cancer. This includes breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. It is often used toge ...
could affect people on an individual basis. The new body-on-a-chip platform includes liver, heart, lungs, and kindey-on-a-chip. The organs-on-a-chip are separately printed or constructed and then integrated together. Using this platform drug toxicity studies are performed in high throughput, lowering the cost and increasing the efficiency in the drug-discovery pipeline.


Legal and safety

3D-printing techniques have been used in a variety of industries for the overall goal of fabricating a product. Organ printing, on the other hand, is a novel industry that utilizes biological components to develop therapeutic applications for organ transplants. Due to the increased interest in this field, regulation and ethical considerations desperately need to be established. Specifically, there can be legal complications from pre-clinical to clinical translation for this treatment method.


Regulation

The current American regulation for organ matching is centered on the national registry of organ donors after the National Organ Transplant Act was passed in 1984. This act was set in place to ensure equal and honest distribution, although it has been proven insufficient due to the large demand for organ transplants. Organ printing can assist in diminishing the imbalance between supply and demand by printing patient-specific organ replacements, all of which is unfeasible without regulation. The
Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food ...
(FDA) is responsible for regulation of
biologics A biopharmaceutical, also known as a biological medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, th ...
, devices, and drugs in the United States. Due to the complexity of this therapeutic approach, the location of organ printing on the spectrum has not been discerned. Studies have characterized printed organs as multi-functional combination products, meaning they fall between the biologics and devices sectors of the FDA; this leads to more extensive processes for review and approval. In 2016, the FDA issued draft guidance on the ''Technical Considerations for Additive Manufactured Devices'' and is currently evaluating new submissions for 3D printed devices. However, the technology itself is not advanced enough for the FDA to mainstream it directly. Currently, the 3D printers, rather than the finished products, are the main focus in safety and efficacy evaluations in order to standardize the technology for personalized treatment approaches. From a global perspective, only South Korea and Japan's medical device regulation administrations have provided guidelines that are applicable to 3D bio-printing. There are also concerns with intellectual property and ownership. These can have a large impact on more consequential matters such as piracy, quality control for manufacturing, and unauthorized use on the black market. These considerations are focused more on the materials and fabrication processes; they are more extensively explained in the legal aspects subsection of 3D printing.


Ethical considerations

From an ethical standpoint, there are concerns with respect to the availability of organ printing technologies, the cell sources, and public expectations. Although this approach may be less expensive than traditional surgical transplantation, there is skepticism in regards to social availability of these 3D printed organs. Contemporary research has found that there is potential social stratification for the wealthier population to have access to this therapy while the general population remains on the organ registry. The cell sources mentioned previously also need to be considered. Organ printing can decrease or eliminate animal studies and trials, but also raises questions on the ethical implications of
autologous Autotransplantation is the transplantation of organs, tissues, or even particular proteins from one part of the body to another in the same person ('' auto-'' meaning "self" in Greek). The autologous tissue (also called autogenous, autogenei ...
and
allogenic In ecology, allogenic succession is succession driven by the abiotic components of an ecosystem. In contrast, autogenic succession is driven by the biotic components of the ecosystem. An allogenic succession can be brought about in a number of ways ...
sources. More specifically, studies have begun to examine future risks for humans undergoing experimental testing. Generally, this application can give rise to social, cultural, and religious differences, making it more difficult for worldwide integration and regulation. Overall, the ethical considerations of organ printing are similar to those of general ethics of bioprinting, but are extrapolated from tissue to organ. Altogether, organ printing possesses short- and long-term legal and ethical consequences that need to be considered before mainstream production can be feasible.


Impact

Organ printing for medical applications is still in the developmental stages. Thus, the long term impacts of organ printing have yet to be determined. Researchers hope that organ printing could decrease the organ transplant shortage. There is currently a shortage of available organs, including liver, kidneys, and lungs. The lengthy wait time to receive life saving organs is one of the leading causes of death in the United States, with nearly one third of deaths each year in the United States that could be delayed or prevented with organ transplants. Currently the only organ that has been 3D bioprinted and successfully transplanted into a human is a bladder. The bladder was formed from the host's bladder tissue. Researchers have proposed that a potential positive impact of 3D printed organs is the ability to customize organs for the recipient. Developments enabling an organ recipient’s host cells to be used to synthesize organs decreases the risk of organ rejection. The ability to print organs has decreased the demand for animal testing. Animal testing is used to determine the safety of products ranging from makeup to medical devices. Cosmetic companies are already using smaller tissue models to test new products on skin. The ability to 3D print skin reduces the need for animal trials for makeup testing. In addition, the ability to print models of human organs to test the safety and efficacy of new drugs further reduces the necessity for animal trials. Researchers at Harvard University determined that drug safety can be accurately tested on smaller tissue models of lungs. The company Organovo, which designed one of the initial commercial bioprinters in 2009, has displayed that biodegradable 3D tissue models can be used to research and develop new drugs, including those to treat cancer. An additional impact of organ printing includes the ability to rapidly create tissue models, therefore increasing productivity.


Challenges

One of the challenges of 3D printing organs is to recreate the vasculature required to keep the organs alive. Designing a correct vasculature is necessary for the transport of nutrients, oxygen, and waste. Blood vessels, especially capillaries, are difficult due to the small diameter. Progress has been made in this area at Rice University, where researchers designed a 3D printer to make vessels in biocompatible hydrogels and designed a model of lungs that can oxygenate blood. However, accompanied with this technique is the challenge of replicating the other minute details of organs. It is difficult to replicate the entangled networks of airways, blood vessels, and bile ducts and complex geometry of organs. The challenges faced in the organ printing field extends beyond the research and development of techniques to solve the issues of multivascularization and difficult geometries. Before organ printing can become widely available, a source for sustainable cell sources must be found and large-scale manufacturing processes need to be developed. Additional challenges include designing clinical trials to test the long-term viability and biocompatibility of synthetic organs. While many developments have been made in the field of organ printing, more research must be conducted.


References

{{Longevity Tissue engineering 3D printing