Negative refraction
   HOME

TheInfoList



OR:

Negative refraction is the electromagnetic phenomenon where
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
rays become
refracted In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomeno ...
at an
interface Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Int ...
that is opposite to their more commonly observed positive refractive properties. Negative refraction can be obtained by using a
metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
which has been designed to achieve a negative value for (electric)
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
(ε) and (magnetic) permeability (μ); in such cases the material can be assigned a negative
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
. Such materials are sometimes called "double negative" materials. Negative refraction occurs at interfaces between materials at which one has an ordinary positive
phase velocity The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave (for example, ...
(i.e., a positive refractive index), and the other has the more exotic negative phase velocity (a negative refractive index).


Negative phase velocity

Negative phase velocity (NPV) is a property of light propagation in a
medium Medium may refer to: Science and technology Aviation * Medium bomber, a class of war plane * Tecma Medium, a French hang glider design Communication * Media (communication), tools used to store and deliver information or data * Medium ...
. There are different definitions of NPV; the most common is Victor Veselago's original proposal of opposition of the
wave vector In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), ...
and (Abraham) the
Poynting vector In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area per unit time) or ''power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the watt p ...
. Other definitions include the opposition of
wave vector In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), ...
to
group velocity The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the ''modulation'' or ''envelope'' of the wave—propagates through space. For example, if a stone is thrown into the middl ...
, and energy to velocity. "Phase velocity" is used conventionally, as phase velocity has the same sign as the wave vector. A typical criterion used to determine Veselago's NPV is that the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alg ...
of the Poynting vector and wave vector is negative (i.e., that \scriptstyle\vec\cdot\vec<0), but this definition is not covariant. While this restriction is not practically significant, the criterion has been generalized into a covariant form. Veselago NPV media are also called "left-handed (meta)materials", as the components of plane waves passing through (electric field, magnetic field, and wave vector) follow the left-hand rule instead of the
right-hand rule In mathematics and physics, the right-hand rule is a common mnemonic for understanding orientation of axes in three-dimensional space. It is also a convenient method for quickly finding the direction of a cross-product of 2 vectors. Most of ...
. The terms "left-handed" and "right-handed" are generally avoided as they are also used to refer to
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from i ...
media.


Negative refractive index

One can choose to avoid directly considering the
Poynting vector In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area per unit time) or ''power flow'' of an electromagnetic field. The SI unit of the Poynting vector is the watt p ...
and wave vector of a propagating light field, and instead directly consider the response of the materials. Assuming the material is achiral, one can consider what values of permittivity (ε) and permeability (µ) result in negative phase velocity (NPV). Since both ε and µ are generally complex, their imaginary parts do not have to be negative for a passive (i.e.
lossy In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data si ...
) material to display negative refraction. In these materials, the criterion for negative phase velocity is derived by Depine and Lakhtakia to be : \epsilon_r, \mu, + \mu_r , \epsilon, < 0, where \epsilon_r, \mu_r are the real valued parts of ε and µ, respectively. For active materials, the criterion is different. NPV occurrence does not necessarily imply negative refraction (negative refractive index). Typically, the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
n is determined using : n =\pm\sqrt, where by convention the positive square root is chosen for n. However, in NPV materials, the negative square root is chosen to mimic the fact that the wave vector and phase velocity are also reversed. The refractive index is a derived quantity that describes how the wavevector is related to the optical frequency and propagation direction of the light; thus, the sign of n must be chosen to match the physical situation.


In chiral materials

The refractive index n also depends on the chirality parameter \kappa, resulting in distinct values for left and right circularly polarized waves, given by :n = \pm\sqrt \pm \kappa. A negative refractive index occurs for one polarization if \kappa > \sqrt; in this case, \epsilon_r and/or \mu_r do not need to be negative. A negative refractive index due to chirality was predicted by Pendry and Tretyakov ''et al.'', and first observed simultaneously and independently by Plum ''et al.'' and Zhang ''et al.'' in 2009.


Refraction

The consequence of negative refraction is light rays are refracted on the same side of the normal on entering the material, as indicated in the diagram, and by a general form of
Snell's law Snell's law (also known as Snell–Descartes law and ibn-Sahl law and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing throug ...
.


See also

*
Acoustic metamaterials An acoustic metamaterial, sonic crystal, or phononic crystal, is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids ( crystal lattices). Sound wave control is accomplished through manipulat ...
*
Metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
*
Negative index metamaterials Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, wh ...
*
Metamaterial antennas Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized ( electrically small) antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, ...
* Multiple-prism dispersion theory * N-slit interferometric equation * Perfect lens * Photonic metamaterials *
Photonic crystal A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic ...
* Seismic metamaterials *
Split-ring resonator A split-ring resonator (SRR) is an artificially produced structure common to metamaterials. Its purpose is to produce the desired magnetic susceptibility (magnetic response) in various types of metamaterials up to 200 terahertz. These media cr ...
*
Tunable metamaterials A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave (EM wave) interacts with a metamaterial. This translates into the capabi ...


Electromagnetic interactions

*
Bloch's theorem In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential take the form of a plane wave modulated by a periodic function. The theorem is named after the physicist Felix Bloch, who d ...
*
Casimir effect In quantum field theory, the Casimir effect is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of the field. It is named after the Dutch physicist Hendrik Casimir, who pre ...
*
Dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
*
Electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
* EM radiation *
Electron mobility In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobil ...
*
Permeability (electromagnetism) In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
* *
Permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
* *
Wavenumber In the physical sciences, the wavenumber (also wave number or repetency) is the '' spatial frequency'' of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber). It is analogous to te ...
* Photo-Dember * Impedance


References

{{reflist, 2 Photonics Physical phenomena Metamaterials Articles containing video clips