Hydraulic jump
   HOME

TheInfoList



OR:

A hydraulic jump is a phenomenon in the science of
hydraulics Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counte ...
which is frequently observed in open channel flow such as
river A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases, a river flows into the ground and becomes dry at the end of its course without reaching another body of ...
s and spillways. When liquid at high velocity discharges into a zone of lower velocity, a rather abrupt rise occurs in the liquid surface. The rapidly flowing liquid is abruptly slowed and increases in height, converting some of the flow's initial kinetic energy into an increase in potential energy, with some energy irreversibly lost through turbulence to heat. In an open channel flow, this manifests as the fast flow rapidly slowing and piling up on top of itself similar to how a
shockwave In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a med ...
forms. It was first observed and documented by
Leonardo da Vinci Leonardo di ser Piero da Vinci (15 April 14522 May 1519) was an Italian polymath of the High Renaissance who was active as a painter, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially rested on ...
in the 1500s. The mathematics were first described by Giorgio Bidone of
Turin University The University of Turin (Italian language, Italian: ''Università degli Studi di Torino'', UNITO) is a public university, public research university in the city of Turin, in the Piedmont (Italy), Piedmont region of Italy. It is one of the List ...
when he published a paper in 1820 called ''Experiences sur le remou et sur la propagation des ondes''. The phenomenon is dependent upon the initial fluid speed. If the initial speed of the fluid is below the critical speed, then no jump is possible. For initial flow speeds which are not significantly above the
critical Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine * Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing ...
speed, the transition appears as an undulating wave. As the initial flow speed increases further, the transition becomes more abrupt, until at high enough speeds, the transition front will break and curl back upon itself. When this happens, the jump can be accompanied by violent turbulence, eddying, air entrainment, and surface undulations, or
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
s. There are two main manifestations of hydraulic jumps and historically different terminology has been used for each. However, the mechanisms behind them are similar because they are simply variations of each other seen from different frames of reference, and so the physics and analysis techniques can be used for both types. The different manifestations are: * The stationary hydraulic jump – rapidly flowing water transitions in a stationary jump to slowly moving water as shown in Figures 1 and 2. * The
tidal bore Tidal is the adjectival form of tide. Tidal may also refer to: * ''Tidal'' (album), a 1996 album by Fiona Apple * Tidal (king), a king involved in the Battle of the Vale of Siddim * TidalCycles, a live coding environment for music * Tidal (se ...
– a wall or undulating wave of water moves upstream against water flowing downstream as shown in Figures 3 and 4. If one considers a frame of reference which moves along with the wave front, then the wave front is stationary relative to the frame and has the same essential behavior as the stationary jump. A related case is a cascade – a wall or undulating wave of water moves downstream overtaking a shallower downstream flow of water as shown in Figure 5. If considered from a frame of reference which moves with the wave front, this is amenable to the same analysis as a stationary jump. These phenomena are addressed in an extensive literature from a number of technical viewpoints. Hydraulic Jump is used sometimes in mixing chemicals.


Classes of hydraulic jumps

Hydraulic jumps can be seen in both a stationary form, which is known as a "hydraulic jump", and a dynamic or moving form, which is known as a positive surge or "hydraulic jump in translation". They can be described using the same analytic approaches and are simply variants of a single phenomenon.


Moving hydraulic jump

A
tidal bore Tidal is the adjectival form of tide. Tidal may also refer to: * ''Tidal'' (album), a 1996 album by Fiona Apple * Tidal (king), a king involved in the Battle of the Vale of Siddim * TidalCycles, a live coding environment for music * Tidal (se ...
is a hydraulic jump which occurs when the incoming tide forms a wave (or waves) of water that travel up a river or narrow bay against the direction of the current. As is true for hydraulic jumps in general, bores take on various forms depending upon the difference in the waterlevel upstream and down, ranging from an undular wavefront to a shock-wave-like wall of water. Figure 3 shows a tidal bore with the characteristics common to shallow upstream water – a large elevation difference is observed. Figure 4 shows a tidal bore with the characteristics common to deep upstream water – a small elevation difference is observed and the wavefront undulates. In both cases the tidal wave moves at the speed characteristic of waves in water of the depth found immediately behind the wave front. A key feature of tidal bores and positive surges is the intense turbulent mixing induced by the passage of the bore front and by the following wave motion. Another variation of the moving hydraulic jump is the cascade. In the cascade, a series of roll waves or undulating waves of water moves downstream overtaking a shallower downstream flow of water. A moving hydraulic jump is called a surge. The travel of wave is faster in the upper portion than in the lower portion in case of positive surges


Stationary hydraulic jump

A stationary hydraulic jump is the type most frequently seen on rivers and on engineered features such as outfalls of dams and irrigation works. They occur when a flow of liquid at high velocity discharges into a zone of the river or engineered structure which can only sustain a lower velocity. When this occurs, the water slows in a rather abrupt rise (a step or
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
) on the liquid surface. Comparing the characteristics before and after, one finds: The other stationary hydraulic jump occurs when a rapid flow encounters a submerged object which throws the water upward. The
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
behind this form is more complex and will need to take into account the shape of the object and the flow characteristics of the fluid around it.


Analysis of the hydraulic jump on a liquid surface

In spite of the apparent complexity of the flow transition, application of simple analytic tools to a two dimensional analysis is effective in providing analytic results which closely parallel both field and laboratory results. Analysis shows: * Height of the jump: the relationship between the depths before and after the jump as a function of flow rate * Energy loss in the jump * Location of the jump on a natural or an engineered structure * Character of the jump: undular or abrupt


Height of the jump

The height of the jump is derived from the application of the equations of conservation of mass and momentum. There are several methods of predicting the height of a hydraulic jump. They all reach common conclusions that: * The ratio of the water depth before and after the jump depend solely on the ratio of velocity of the water entering the jump to the speed of the wave over-running the moving water. * The height of the jump can be many times the initial depth of the water. For a known flow rate q, as shown by the figure below, the approximation that the momentum flux is the same just up- and downstream of the energy principle yields an expression of the energy loss in the hydraulic jump. Hydraulic jumps are commonly used as energy dissipators downstream of dam spillways. ; Applying the continuity principle In fluid dynamics, the equation of continuity is effectively an equation of
conservation of mass In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass can ...
. Considering any fixed closed surface within an incompressible moving fluid, the fluid flows into a given volume at some points and flows out at other points along the surface with no net change in mass within the space since the density is constant. In case of a rectangular channel, then the equality of mass flux upstream (\rho v_0 h_0) and downstream (\rho v_1 h_1) gives: : v_0 h_0 = v_1 h_1 = q or v_1 = v_0 , with \rho the fluid
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
, v_0 and v_1 the depth-
averaged In mathematics and statistics, the arithmetic mean ( ) or arithmetic average, or just the ''mean'' or the ''average'' (when the context is clear), is the sum of a collection of numbers divided by the count of numbers in the collection. The coll ...
flow velocities upstream and downstream, and h_0 and h_1 the corresponding water depths. ; Conservation of momentum flux For a straight prismatic rectangular channel, the conservation of momentum
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ...
across the jump, assuming constant density, can be expressed as: : \rho v_0^2h_0 + \rho gh_0^2 = \rho v_1^2h_1 + \rho gh_1^2. In rectangular channel, such conservation equation can be further simplified to dimensionless M-y equation form, which is widely used in hydraulic jump analysis in open channel flow. Jump height in terms of flow Dividing by constant \rho and introducing the result from continuity gives : v_0^2 \left(h_0-\right) + (h_0^2 - h_1^2)=0. which, after some algebra, simplifies to: : \left( + 1\right) - Fr^2 = 0, where Fr^2=. Here Fr is the
dimensionless A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1) ...
Froude number In continuum mechanics, the Froude number (, after William Froude, ) is a dimensionless number defined as the ratio of the flow inertia to the external field (the latter in many applications simply due to gravity). The Froude number is based on ...
, and relates inertial to gravitational forces in the upstream flow. Solving this quadratic yields: : =\frac. Negative answers do not yield meaningful physical solutions, so this reduces to: : =\frac so : =\frac, known as
Bélanger Bélanger is a French surname, popular in Canada. Notable people with the name include: A-F * Alain Bélanger (born 1956), Canadian ice hockey player * Alexis Bélanger (1808–1868), Roman Catholic priest and missionary * Amable Bélanger ( ...
equation. The result may be extended to an irregular cross-section. This produces three solution classes: * When \frac = 1, then = 1 (i.e., there is no jump) * When \frac < 1, then < 1 (i.e., there is a negative jump – this can be shown as not conserving energy and is only physically possible if some force were to accelerate the fluid at that point) * When \frac > 1, then > 1 (i.e., there is a positive jump) This is equivalent to the condition that \ Fr > 1. Since the \ \sqrt is the speed of a shallow
gravity wave In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere a ...
, the condition that \ Fr > 1 is equivalent to stating that the initial velocity represents supercritical flow (Froude number > 1) while the final velocity represents subcritical flow (Froude number < 1). ;Undulations downstream of the jump Practically this means that water accelerated by large drops can create stronger standing waves ( undular bores) in the form of hydraulic jumps as it decelerates at the base of the drop. Such standing waves, when found downstream of a
weir A weir or low head dam is a barrier across the width of a river that alters the flow characteristics of water and usually results in a change in the height of the river level. Weirs are also used to control the flow of water for outlets of l ...
or natural rock ledge, can form an extremely dangerous "keeper" with a water wall that "keeps" floating objects (e.g., logs, kayaks, or kayakers) recirculating in the standing wave for extended periods.


Energy dissipation by a hydraulic jump

One of the most important engineering applications of the hydraulic jump is to dissipate energy in channels, dam spillways, and similar structures so that the excess kinetic energy does not damage these structures. The rate of energy dissipation or
head loss Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum., 410 pages. See pp. 43–44., 650 pages. See p. 22. It is usually measured as a liquid surface elevation, expressed in units of length, ...
across a hydraulic jump is a function of the hydraulic jump inflow Froude number and the height of the jump. The energy loss at a hydraulic jump expressed as a head loss is: \Delta E = \frac


Location of hydraulic jump in a streambed or an engineered structure

In the design of a dam the energy of the fast-flowing stream over a
spillway A spillway is a structure used to provide the controlled release of water downstream from a dam or levee, typically into the riverbed of the dammed river itself. In the United Kingdom, they may be known as overflow channels. Spillways ensure th ...
must be partially dissipated to prevent
erosion Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is d ...
of the streambed downstream of the spillway, which could ultimately lead to failure of the dam. This can be done by arranging for the formation of a hydraulic jump to dissipate energy. To limit damage, this hydraulic jump normally occurs on an apron engineered to withstand hydraulic forces and to prevent local
cavitation Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, ca ...
and other phenomena which accelerate erosion. In the design of a spillway and apron, the engineers select the point at which a hydraulic jump will occur. Obstructions or slope changes are routinely designed into the apron to force a jump at a specific location. Obstructions are unnecessary, as the slope change alone is normally sufficient. To trigger the hydraulic jump without obstacles, an apron is designed such that the flat slope of the apron retards the rapidly flowing water from the spillway. If the apron slope is insufficient to maintain the original high velocity, a jump will occur. Two methods of designing an induced jump are common: * If the downstream flow is restricted by the down-stream channel such that water backs up onto the foot of the spillway, that downstream water level can be used to identify the location of the jump. * If the spillway continues to drop for some distance, but the slope changes such that it will no longer support supercritical flow, the depth in the lower subcritical flow region is sufficient to determine the location of the jump. In both cases, the final depth of the water is determined by the downstream characteristics. The jump will occur if and only if the level of inflowing (supercritical) water level ( h_0 ) satisfies the condition: : h_0 = \left ( \right ) : ''Fr'' = Upstream Froude Number : ''g'' = acceleration due to gravity (essentially constant for this case) : ''h'' =
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For example, "The height of that building is 50 m" or "The height of an airplane in-flight is ab ...
of the fluid ( h_0 = initial height while h_1 = upstream height)


Air entrainment in hydraulic jumps

The hydraulic jump is characterised by a highly turbulent flow. Macro-scale vortices develop in the jump roller and interact with the free surface leading to air bubble entrainment, splashes and droplets formation in the two-phase flow region. The air–water flow is associated with turbulence, which can also lead to sediment transport. The turbulence may be strongly affected by the bubble dynamics. Physically, the mechanisms involved in these processes are complex. The air entrainment occurs in the form of air bubbles and air packets entrapped at the impingement of the upstream jet flow with the roller. The air packets are broken up in very small air bubbles as they are entrained in the shear region, characterised by large air contents and maximum bubble count rates. Once the entrained bubbles are advected into regions of lesser shear, bubble collisions and coalescence lead to larger air entities that are driven toward the free-surface by a combination of buoyancy and turbulent advection.


Tabular summary of the analytic conclusions

NB: the above classification is very rough. Undular hydraulic jumps have been observed with inflow/prejump Froude numbers up to 3.5 to 4.


Hydraulic jump variations

A number of variations are amenable to similar analysis:


Shallow fluid hydraulic jumps

;The hydraulic jump in a sink Figure 2 above illustrates an example of a hydraulic jump, often seen in a kitchen sink. Around the place where the tap water hits the sink, a smooth-looking flow pattern will occur. A little further away, a sudden "jump" in the water level will be present. This is a hydraulic jump. On impingement of a liquid jet normally on to a surface, the liquid spreads radially in a thin film until a point where the film thickness changes abruptly. This abrupt change in liquid film thickness is called a circular hydraulic jump. Most articles in literature assume that the thin film hydraulic jumps are created due to gravity (related to the Froude number). However, a recent scientific study questioned this more than century-old belief. The authors experimentally and theoretically investigated the possibility for kitchen sink hydraulic jumps to be created due to surface tension instead of gravity. To rule out the role of gravity in the formation of a circular hydraulic jump, authors performed experiments on horizontal, vertical and on an inclined surface and showed that irrespective of the orientation of the substrate, for same flow rate and physical properties of the liquid, the initial hydraulic jump happens at the same location. They proposed a model for the phenomenon and found the general criterion for a thin film hydraulic jump to be :\frac + \frac = 1 where We is the local
Weber number The Weber number (We) is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surfaces. It is named ...
and Fr is the local
Froude number In continuum mechanics, the Froude number (, after William Froude, ) is a dimensionless number defined as the ratio of the flow inertia to the external field (the latter in many applications simply due to gravity). The Froude number is based on ...
. For kitchen sink scale hydraulic jumps, the Froude number remains high, therefore, the effective criteria for the thin film hydraulic jump is We = 1 . In other words, a thin film hydraulic jump occurs when the liquid momentum per unit width equals the surface tension of the liquid. However, this model stays heavily contested.


Internal wave hydraulic jumps


Hydraulic jumps in abyssal fan formation

Turbidity current A turbidity current is most typically an underwater current of usually rapidly moving, sediment-laden water moving down a slope; although current research (2018) indicates that water-saturated sediment may be the primary actor in the process. T ...
s can result in internal hydraulic jumps (i.e., hydraulic jumps as internal waves in fluids of different density) in
abyssal fan Abyssal fans, also known as deep-sea fans, underwater deltas, and submarine fans, are underwater geological structures associated with large-scale sediment deposition and formed by turbidity currents. They can be thought of as an underwater ver ...
formation. The internal hydraulic jumps have been associated with salinity or temperature induced stratification as well as with density differences due to suspended materials. When the slope of the bed (over which the turbidity current flows) flattens, the slower rate of flow is mirrored by increased sediment deposition below the flow, producing a gradual backward slope. Where a hydraulic jump occurs, the signature is an abrupt backward slope, corresponding to the rapid reduction in the flow rate at the point of the jump.


Atmospheric hydraulic jumps

Hydraulic jumps occur in the atmosphere in the air flowing over mountains. A hydraulic jump also occurs at the tropopause interface between the stratosphere and troposphere downwind of the overshooting top of very strong
supercell A supercell is a thunderstorm characterized by the presence of a mesocyclone: a deep, persistently rotating updraft. Due to this, these storms are sometimes referred to as rotating thunderstorms. Of the four classifications of thunderstorms ( ...
thunderstorms. A related situation is the Morning Glory cloud observed, for example, in Northern Australia, sometimes called an undular jump.


Industrial and recreational applications for hydraulic jumps


Industrial

The hydraulic jump is the most commonly used choice of design engineers for energy dissipation below spillways and outlets. A properly designed hydraulic jump can provide for 60-70% energy dissipation of the energy in the basin itself, limiting the damage to structures and the streambed. Even with such efficient energy dissipation, stilling basins must be carefully designed to avoid serious damage due to uplift, vibration,
cavitation Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, ca ...
, and abrasion. An extensive literature has been developed for this type of engineering.


Recreational

While travelling down river,
kayaking Kayaking is the use of a kayak for moving over water. It is distinguished from canoeing by the sitting position of the paddler and the number of blades on the paddle. A kayak is a low-to-the-water, canoe-like boat in which the paddler sits faci ...
and
canoeing Canoeing is an activity which involves paddling a canoe with a single-bladed paddle. Common meanings of the term are limited to when the canoeing is the central purpose of the activity. Broader meanings include when it is combined with other act ...
paddlers will often stop and
playboat Canoe freestyle (also known as playboating) is a discipline of whitewater kayaking or canoeing where people perform various technical moves in one place (a playspot), as opposed to downriver whitewater canoeing or kayaking where the objective ...
in standing waves and hydraulic jumps. The standing waves and shock fronts of hydraulic jumps make for popular locations for such recreation. Similarly, kayakers and surfers have been known to ride
tidal bore Tidal is the adjectival form of tide. Tidal may also refer to: * ''Tidal'' (album), a 1996 album by Fiona Apple * Tidal (king), a king involved in the Battle of the Vale of Siddim * TidalCycles, a live coding environment for music * Tidal (se ...
s up rivers. Hydraulic jumps have been used by glider pilots in the Andes and Alps and to ride Morning Glory effects in Australia.


See also

* * * * *


References and notes


Further reading

* {{DEFAULTSORT:Hydraulic jump Fluid dynamics Hydraulics concepts Wave mechanics