Hume's principle
   HOME

TheInfoList



OR:

Hume's principle or HP says that the number of ''F''s is equal to the number of ''G''s if and only if there is a
one-to-one correspondence In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
(a bijection) between the ''F''s and the ''G''s. HP can be stated formally in systems of
second-order logic In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies on ...
. Hume's principle is named for the Scottish philosopher
David Hume David Hume (; born David Home; 7 May 1711 NS (26 April 1711 OS) – 25 August 1776) Cranston, Maurice, and Thomas Edmund Jessop. 2020 999br>David Hume" ''Encyclopædia Britannica''. Retrieved 18 May 2020. was a Scottish Enlightenment phil ...
and was coined by
George Boolos George Stephen Boolos (; 4 September 1940 – 27 May 1996) was an American philosopher and a mathematical logician who taught at the Massachusetts Institute of Technology. Life Boolos is of Greek-Jewish descent. He graduated with an A.B. i ...
. HP plays a central role in
Gottlob Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic ph ...
's philosophy of mathematics. Frege shows that HP and suitable definitions of arithmetical notions
entail In English common law, fee tail or entail is a form of trust established by deed or settlement which restricts the sale or inheritance of an estate in real property and prevents the property from being sold, devised by will, or otherwise alien ...
all axioms of what we now call
second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precur ...
. This result is known as Frege's theorem, which is the foundation for a philosophy of mathematics known as
neo-logicism In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that — for some coherent meaning of 'logic' — mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or al ...
.


Origins

Hume's principle appears in Frege's ''Foundations of Arithmetic'' (§63), which quotes from Part III of Book I of
David Hume David Hume (; born David Home; 7 May 1711 NS (26 April 1711 OS) – 25 August 1776) Cranston, Maurice, and Thomas Edmund Jessop. 2020 999br>David Hume" ''Encyclopædia Britannica''. Retrieved 18 May 2020. was a Scottish Enlightenment phil ...
's '' A Treatise of Human Nature'' (1740). Hume there sets out seven fundamental relations between ideas. Concerning one of these, proportion in
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a unit ...
or
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
, Hume argues that our reasoning about proportion in quantity, as represented by
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, can never achieve "perfect precision and exactness", since its principles are derived from sense-appearance. He contrasts this with reasoning about number or arithmetic, in which such a precision ''can'' be attained:
Algebra and arithmetic rethe only sciences in which we can carry on a chain of reasoning to any degree of intricacy, and yet preserve a perfect exactness and certainty. We are possessed of a precise standard, by which we can judge of the equality and proportion of numbers; and according as they correspond or not to that standard, we determine their relations, without any possibility of error. ''When two numbers are so combined, as that the one has always a unit answering to every unit of the other, we pronounce them equal''; and it is for want of such a standard of equality in patialextension, that geometry can scarce be esteemed a perfect and infallible science. (I. III. I.)
Note Hume's use of the word ''
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
'' in the ancient sense, to mean a set or collection of things rather than the common modern notion of "positive integer". The ancient Greek notion of number (''arithmos'') is of a finite plurality composed of units. See
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
, ''
Metaphysics Metaphysics is the branch of philosophy that studies the fundamental nature of reality, the first principles of being, identity and change, space and time, causality, necessity, and possibility. It includes questions about the nature of conscio ...
'', 1020a14 and
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
, '' Elements'', Book VII, Definition 1 and 2. The contrast between the old and modern conception of number is discussed in detail in Mayberry (2000).


Influence on set theory

The principle that
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
was to be characterized in terms of
one-to-one correspondence In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
had previously been used by
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
, whose writings
Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic ph ...
knew. The suggestion has therefore been made that Hume's principle ought better be called "Cantor's Principle" or "The Hume-Cantor Principle". But Frege criticized Cantor on the ground that Cantor defines
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
s in terms of ordinal numbers, whereas Frege wanted to give a characterization of cardinals that was independent of the ordinals. Cantor's point of view, however, is the one embedded in contemporary theories of
transfinite number In mathematics, transfinite numbers are numbers that are " infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to q ...
s, as developed in axiomatic set theory.


References

* * * * * * *


External links

* Stanford Encyclopedia of Philosophy:
Frege's Logic, Theorem, and Foundations for Arithmetic
by
Edward Zalta Edward Nouri Zalta (; born March 16, 1952) is an American philosopher who is a senior research scholar at the Center for the Study of Language and Information at Stanford University. He received his BA at Rice University in 1975 and his PhD from ...
.
"The Logical and Metaphysical Foundations of Classical Mathematics."


{{Hume Set theory Philosophy of mathematics Mathematical principles Concepts in logic