Galois extension
   HOME

TheInfoList



OR:

In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
Aut(''E''/''F'') is precisely the base
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''F''. The significance of being a Galois extension is that the extension has a
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
and obeys the
fundamental theorem of Galois theory In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most basi ...
. A result of Emil Artin allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension.


Characterization of Galois extensions

An important theorem of Emil Artin states that for a
finite extension In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory &mdash ...
E/F, each of the following statements is equivalent to the statement that E/F is Galois: *E/F is a
normal extension In abstract algebra, a normal extension is an algebraic field extension ''L''/''K'' for which every irreducible polynomial over ''K'' which has a root in ''L'', splits into linear factors in ''L''. These are one of the conditions for algebraic e ...
and a
separable extension In field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial of \alpha over is a separable polynomial (i.e., its formal derivative is not the zero polyno ...
. *E is a
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a poly ...
of a
separable polynomial In mathematics, a polynomial ''P''(''X'') over a given field ''K'' is separable if its roots are distinct in an algebraic closure of ''K'', that is, the number of distinct roots is equal to the degree of the polynomial. This concept is closely ...
with coefficients in F. *, \!\operatorname(E/F), = :F that is, the number of automorphisms equals the
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathematics ...
of the extension. Other equivalent statements are: *Every irreducible polynomial in F /math> with at least one root in E splits over E and is separable. *, \!\operatorname(E/F), \geq :F that is, the number of automorphisms is at least the degree of the extension. *F is the fixed field of a subgroup of \operatorname(E). *F is the fixed field of \operatorname(E/F). *There is a one-to-one correspondence between subfields of E/F and subgroups of \operatorname(E/F).


Examples

There are two basic ways to construct examples of Galois extensions. * Take any field E, any finite subgroup of \operatorname(E), and let F be the fixed field. * Take any field F, any separable polynomial in F /math>, and let E be its
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a poly ...
. Adjoining to the
rational number field In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
the square root of 2 gives a Galois extension, while adjoining the cubic root of 2 gives a non-Galois extension. Both these extensions are separable, because they have
characteristic zero In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive ide ...
. The first of them is the splitting field of x^2 -2; the second has normal closure that includes the complex cubic roots of unity, and so is not a splitting field. In fact, it has no automorphism other than the identity, because it is contained in the real numbers and x^3 -2 has just one real root. For more detailed examples, see the page on the
fundamental theorem of Galois theory In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most basi ...
. An
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ( ...
\bar K of an arbitrary field K is Galois over K if and only if K is a
perfect field In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has distinct roots. * Every irreducible polynomial over ''k'' is separable. * Every finite extension of ''k' ...
.


Notes


Citations


References

*


Further reading

* * * ''(Galois' original paper, with extensive background and commentary.)'' * * * ''(Chapter 4 gives an introduction to the field-theoretic approach to Galois theory.)'' * (This book introduces the reader to the Galois theory of Grothendieck, and some generalisations, leading to Galois
groupoids In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: *''Group'' with a partial func ...
.) * * * * *. English translation (of 2nd revised edition): ''(Later republished in English by Springer under the title "Algebra".)'' * {{DEFAULTSORT:Galois Extension Galois theory Algebraic number theory Field extensions