Focus (geometry)
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, focuses or foci (), singular focus, are special points with reference to which any of a variety of
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
s is constructed. For example, one or two foci can be used in defining
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
s, the four types of which are the
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
,
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
,
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descript ...
, and
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
. In addition, two foci are used to define the
Cassini oval In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points ( foci) is constant. This may be contrasted with an ellipse, for which the ''sum'' of t ...
and the
Cartesian oval In geometry, a Cartesian oval is a plane curve consisting of points that have the same linear combination of distances from two fixed points ( foci). These curves are named after French mathematician René Descartes, who used them in optics. De ...
, and more than two foci are used in defining an ''n''-ellipse.


Conic sections


Defining conics in terms of two foci

An
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
can be defined as the
locus Locus (plural loci) is Latin for "place". It may refer to: Entertainment * Locus (comics), a Marvel Comics mutant villainess, a member of the Mutant Liberation Front * ''Locus'' (magazine), science fiction and fantasy magazine ** ''Locus Award' ...
of points for which the sum of the distances to two given foci is constant. A
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
is the special case of an ellipse in which the two foci coincide with each other. Thus, a circle can be more simply defined as the locus of points each of which is a fixed distance from a single given focus. A circle can also be defined as the circle of Apollonius, in terms of two different foci, as the locus of points having a fixed ratio of distances to the two foci. A
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descript ...
is a limiting case of an ellipse in which one of the foci is a
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Ad ...
. A
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
can be defined as the locus of points for which the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
of the difference between the distances to two given foci is constant.


Defining conics in terms of a focus and a directrix

It is also possible to describe all
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
s in terms of a single focus and a single directrix, which is a given line not containing the focus. A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
''e''. If 0 < ''e'' < 1 the conic is an ellipse, if ''e'' = 1 the conic is a parabola, and if ''e'' > 1 the conic is a hyperbola. If the distance to the focus is fixed and the directrix is a
line at infinity In geometry and topology, the line at infinity is a projective line that is added to the real (affine) plane in order to give closure to, and remove the exceptional cases from, the incidence properties of the resulting projective plane. The ...
, so the eccentricity is zero, then the conic is a circle.


Defining conics in terms of a focus and a directrix circle

It is also possible to describe all the conic sections as loci of points that are equidistant from a single focus and a single, circular directrix. For the ellipse, both the focus and the center of the directrix circle have finite coordinates and the radius of the directrix circle is greater than the distance between the center of this circle and the focus; thus, the focus is inside the directrix circle. The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see
Projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, pro ...
). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line. The two arms of the parabola become increasingly parallel as they extend, and "at infinity" become parallel; using the principles of projective geometry, the two parallels intersect at the point at infinity and the parabola becomes a closed curve (elliptical projection). To generate a hyperbola, the radius of the directrix circle is chosen to be less than the distance between the center of this circle and the focus; thus, the focus is outside the directrix circle. The arms of the hyperbola approach asymptotic lines and the "right-hand" arm of one branch of a hyperbola meets the "left-hand" arm of the other branch of a hyperbola at the point at infinity; this is based on the principle that, in projective geometry, a single line meets itself at a point at infinity. The two branches of a hyperbola are thus the two (twisted) halves of a curve closed over infinity. In projective geometry, all conics are equivalent in the sense that every theorem that can be stated for one can be stated for the others.


Astronomical significance

In the
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
al
two-body problem In classical mechanics, the two-body problem is to predict the motion of two massive objects which are abstractly viewed as point particles. The problem assumes that the two objects interact only with one another; the only force affecting each ...
, the orbits of the two bodies about each other are described by two overlapping conic sections with one of the foci of one being coincident with one of the foci of the other at the
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
(
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
) of the two bodies. Thus, for instance, the
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor ...
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest ...
's largest
moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
Charon has an elliptical orbit which has one focus at the Pluto-Charon system's barycenter, which is a point that is in space between the two bodies; and Pluto also moves in an ellipse with one of its foci at that same barycenter between the bodies. Pluto's ellipse is entirely inside Charon's ellipse, as shown in this animation of the system. By comparison, the Earth's
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
moves in an ellipse with one of its foci at the barycenter of the Moon and the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, this barycenter being within the Earth itself, while the Earth (more precisely, its center) moves in an ellipse with one focus at that same barycenter within the Earth. The barycenter is about three-quarters of the distance from Earth's center to its surface. Moreover, the Pluto-Charon system moves in an ellipse around its barycenter with the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, as does the Earth-Moon system (and every other planet-moon system or moonless planet in the solar system). In both cases the barycenter is well within the body of the Sun. Two
binary star A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in wh ...
s also move in ellipses sharing a focus at their barycenter; for an animation, see
here Here is an adverb that means "in, on, or at this place". It may also refer to: Software * Here Technologies, a mapping company * Here WeGo (formerly Here Maps), a mobile app and map website by Here Technologies, Here Television * Here TV (form ...
.


Cartesian and Cassini ovals

A
Cartesian oval In geometry, a Cartesian oval is a plane curve consisting of points that have the same linear combination of distances from two fixed points ( foci). These curves are named after French mathematician René Descartes, who used them in optics. De ...
is the set of points for each of which the
weighted sum A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is ...
of the distances to two given foci is constant. If the weights are equal, the special case of an ellipse results. A
Cassini oval In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points ( foci) is constant. This may be contrasted with an ellipse, for which the ''sum'' of t ...
is the set of points for each of which the product of the distances to two given foci is constant.


Generalizations

An ''n''-ellipse is the set of points all having the same sum of distances to ''n'' foci (the ''n'' = 2 case being the conventional ellipse). The concept of a focus can be generalized to arbitrary
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
s. Let ''C'' be a curve of class ''m'' and let ''I'' and ''J'' denote the
circular points at infinity In projective geometry, the circular points at infinity (also called cyclic points or isotropic points) are two special points at infinity in the complex projective plane that are contained in the complexification of every real circle. Coordinates ...
. Draw the ''m'' tangents to ''C'' through each of ''I'' and ''J''. There are two sets of ''m'' lines which will have ''m''2 points of intersection, with exceptions in some cases due to singularities, etc. These points of intersection are the defined to be the foci of ''C''. In other words, a point ''P'' is a focus if both ''PI'' and ''PJ'' are tangent to ''C''. When ''C'' is a real curve, only the intersections of conjugate pairs are real, so there are ''m'' in a real foci and ''m''2 − ''m'' imaginary foci. When ''C'' is a conic, the real foci defined this way are exactly the foci which can be used in the geometric construction of ''C''.


Confocal curves

Let ''P''1, ''P''2, ..., ''P''''m'' be given as foci of a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
''C'' of class ''m''. Let ''P'' be the product of the tangential equations of these points and ''Q'' the product of the tangential equations of the circular points at infinity. Then all the lines which are common tangents to both ''P'' = 0 and ''Q'' = 0 are tangent to ''C''. So, by the AF+BG theorem, the tangential equation of ''C'' has the form ''HP'' + ''KQ'' = 0. Since ''C'' has class ''m'', ''H'' must be a constant and ''K'' but have degree less than or equal to ''m''−2. The case ''H'' = 0 can be eliminated as degenerate, so the tangential equation of ''C'' can be written as ''P'' + ''fQ'' = 0 where ''f'' is an arbitrary
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
of
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathematics ...
''m''2.Follows Hilton p. 69 with an appeal to AF+BG for simplification. For example, let ''m'' = 2, ''P''1 = (1,0), and ''P''2 = (−1,0). The tangential equations are ''X'' + 1 = 0 and ''X'' − 1 = 0 so ''P'' = ''X''2 − 1 = 0. The tangential equations for the circular points at infinity are ''X'' + ''iY'' = 0 and ''X'' − ''iY'' = 0 so ''Q'' = ''X''2 +''Y''2. Therefore, the tangential equation for a conic with the given foci is ''X''2 − 1 + ''c''(''X''2 +''Y''2) = 0, or (1+ ''c'')''X''2 + ''cY''2 = 1 where ''c'' is an arbitrary constant. In point coordinates this becomes :\frac + \frac = 1.


References

* *{{Mathworld, title=Focus, urlname=Focus Conic sections Geometric centers