HOME
The Info List - Cockpit Voice Recorder





A flight recorder is an electronic recording device placed in an aircraft for the purpose of facilitating the investigation of aviation accidents and incidents. Flight
Flight
recorders are also known by the misnomer black box—they are actually bright orange to aid in their recovery after accidents. The flight data recorder (FDR) is a device that preserves the recent history of the flight through the recording of dozens of parameters collected several times per second. The cockpit voice recorder (CVR) preserves the recent history of the sounds in the cockpit, including the conversation of the pilots. The two recorders give an accurate testimony, narrating the aircraft's flight history, to assist in any later investigation. The FDR and CVR may be combined in a single unit. The two recorders are required by international regulation, overseen by the International Civil Aviation
Aviation
Organization, to be capable of surviving the conditions likely to be encountered in a severe aircraft accident. For this reason, they are typically specified to withstand an impact of 3400 g and temperatures of over 1,000 °C (1,830 °F) as required by EUROCAE ED-112. They have been required in commercial aircraft in the US since 1967.

Contents

1 History

1.1 Early designs 1.2 Australia 1.3 United States

2 Terminology 3 Components

3.1 Flight
Flight
data recorder 3.2 Cockpit
Cockpit
voice recorder 3.3 Combined units 3.4 Additional equipment

4 Specifications 5 Regulation

5.1 Proposed requirements

5.1.1 Deployable recorders 5.1.2 Image recorders

5.2 After Malaysia Airlines Flight
Flight
370 5.3 After Indonesia AirAsia Flight
Flight
8501

6 Cultural references 7 See also 8 References 9 Further reading 10 External links

History[edit]

Play media

1985 ABC news report interviewing David Warren about his invention

Cockpit
Cockpit
voice recorder (on display in the Deutsches Museum). This is a magnetic tape unit built to an old standard TSO C84 as shown on the nameplate. The text on the side in French says "flight recorder do not open"

Early designs[edit] One of the earliest and proven attempts was made by François Hussenot and Paul Beaudouin in 1939 at the Marignane
Marignane
flight test center, France, with their "type HB" flight recorder; they were essentially photograph-based flight recorders, because the record was made on a scrolling eight meters long by 88 millimeters wide photographic film. The latent image was made by a thin ray of light deviated by a mirror tilted according to the magnitude of the data to record (altitude, speed, etc.).[1][2] A pre-production run of 25 "HB" recorders was ordered in 1941 and HB recorders remained in use in French test centers well into the seventies.[3] In 1947, Hussenot founded the Société Française des Instruments de Mesure with Beaudouin and another associate, so as to market his invention, which was also known as the "hussenograph". This company went on to become a major supplier of data recorders, used not only aboard aircraft but also trains and other vehicles. SFIM is today part of the Safran
Safran
group and is still present on the flight recorder market. The advantage of the film technology was that it could be easily developed afterwards and provides a durable, visual feedback of the flight parameters without needing any playback device. On the other hand, unlike magnetic bands or later flash memory-based technology, a photographic film cannot be erased and recycled, and so it must be changed periodically. As such, this technology was reserved for one-shot uses, mostly during planned test flights; and it was not mounted aboard civilian aircraft during routine commercial flights. Also, the cockpit conversation was not recorded. Another form of flight data recorder was developed in the UK during World War II. Len Harrison and Vic Husband developed a unit that could withstand a crash and fire to keep the flight data intact. This unit used copper foil as the recording medium with various styli indicating various instruments / aircraft controls which indented the copper foil. The copper foil was periodically advanced at set periods of time therefore giving a history of the instruments / control settings of the aircraft. This unit was developed at Farnborough for the Ministry of Aircraft
Aircraft
Production. At the war's end the Ministry got Harrison and Husband to sign over their invention to them and the Ministry patented it under British patent 19330/45. This unit was the forerunner of today's black boxes being able to withstand conditions that aircrew could not. The first modern flight recorder, called "Mata Hari", was created in 1942 by Finnish aviation engineer Veijo Hietala. This black high-tech mechanical box was able to record all important aviation details during test flights of World War II
World War II
fighter aircraft that the Finnish army repaired or built in their main aviation factory in Tampere, Finland[4]. The "Mata Hari" black box is displayed in the Vapriikki Museum (fi) in Tampere, Finland.[citation needed] Australia[edit] In 1953, Australian
Australian
engineer David Warren conceived a device that would record not only the instruments reading, but also the cockpit voices, when working with the Australian
Australian
Research Laboratories.[5] He built the first prototype in 1958.[6] Warren, when working with the Defence Science and Technology Organisations' Aeronautical Research Laboratory (Melbourne, Australia),[7] published a 1954 report entitled "A Device for Assisting Investigation into Aircraft
Aircraft
Accidents" and built a prototype FDR called "The ARL Flight
Flight
Memory Unit" in 1957. The first coupled FDR / CVR prototype designed with civilian aircraft in mind, for explicit post-crash examination purposes, was produced in 1958.[8][9] However, aviation authorities from around the world were largely uninterested. This changed in 1958 when Sir Robert Hardingham, the Secretary of the British Air Registration Board, visited the ARL and was introduced to Warren. The Aeronautical Research Laboratory allocated Warren an engineering team to develop the prototype to airborne stage. The team, consisting of electronics engineers Lane Sear, Wally Boswell and Ken Fraser developed a working design incorporating a fire and shockproof case, a reliable system for encoding and recording aircraft instrument readings and voice on one wire, and a ground-based decoding device. The ARL system became the "Red Egg", made by the British firm of S. Davall & Sons, Ltd., of Greenford, Middlesex. The "Red Egg" got its name from its shape and bright red color. In 1965 the units were redesigned and moved to the rear of airplanes to improve the probability of successful data retrieval after a crash. United States[edit] The " Flight
Flight
Recorder" was invented and patented in the United States by Professor James J. "Crash" Ryan, a professor of mechanical engineering at the University of Minnesota
University of Minnesota
from 1931 to 1963. Ryan's " Flight
Flight
Recorder" patent was filed in August 1953 and approved on November 8, 1960; see US Patent 2,959,459.[10] A second patent by Ryan for a "Coding Apparatus For Flight
Flight
Recorders and the Like" is US Patent 3,075,192[11] dated January 22, 1963. An early prototype of the Ryan Flight
Flight
Data Recorder is described in the January 2013 Aviation History Magazine article "Father of the Black Box" by Scott M. Fisher.[12] Ryan, also the inventor of the retractable safety seat belt now required in automobiles, began working on the idea of a flight recorder in 1946, and invented the device in response to the 1948 request from the Civil Aeronautics Board
Civil Aeronautics Board
for development of a flight recorder as a means of accumulating data that could be used to get information useful in arriving at operating procedures designed to reduce air mishaps. The original device was known as the "General Mills Flight
Flight
Recorder". The benefits of the flight recorder and the coding apparatus for flight recorders were outlined by Ryan in his study entitled "Economies in Airline
Airline
Operation with Flight
Flight
Recorders" which was entered into the Congressional Record in 1956. Ryan's Flight Recorder maintained a continuing recording of aircraft flight data such as engine exhaust, temperature, fuel flow, aircraft velocity, altitude, control surfaces positions, and rate of descent. A " Cockpit
Cockpit
Sound Recorder" (CSR) was independently invented and patented by Edmund A. Boniface, Jr., an aeronautical engineer at Lockheed Aircraft
Aircraft
Corporation.[13][14][15] He originally filed with the US Patent Office on February 2, 1961, as an " Aircraft
Aircraft
Cockpit Sound Recorder".[16] The 1961 invention was viewed by some as an "invasion of privacy". Subsequently Boniface filed again on February 4, 1963 for a " Cockpit
Cockpit
Sound Recorder" (US Patent 3,327,067)[13] with the addition of a spring-loaded switch which allowed the pilot to erase the audio/sound tape recording at the conclusion of a safe flight and landing. Boniface's participation in aircraft crash investigations in the 1940s[17] and in the accident investigations of the loss of one of the wings at cruise altitude on each of two Lockheed Electra turboprop powered aircraft ( Flight
Flight
#542 operated by Braniff Airlines
Braniff Airlines
in 1959 and Flight
Flight
#710 operated by Northwest Orient Airlines in 1961) led to his wondering what the pilots may have said just prior to the wing loss and during the descent as well as the type and nature of any sounds or explosions that may have preceded or occurred during the wing loss. His patent was for a device for recording audio of pilot remarks and engine or other sounds to be "contained with the in-flight recorder within a sealed container that is shock mounted, fireproofed and made watertight" and "sealed in such a manner as to be capable of withstanding extreme temperatures during a crash fire". The CSR was an analog device which provided a progressive erasing/recording loop (lasting 30 or more minutes) of all sounds (explosion, voice, and the noise of any aircraft structural components undergoing serious fracture and breakage) which could be overheard in the cockpit.[18] Terminology[edit]

GEE airborne equipment, with the R1355 receiver on the left and the Indicator Unit Type 62A 'black box' on the right.

The origin of the term "black box" is uncertain. In a systems engineering context (since the 1960s when the term was spreading), the meaning is that the aircraft is modeled as a black box, and its behaviour can be understood from its recorded inputs, such as pilot instructions, and outputs, such as flight level data.[citation needed] The term "black box" is almost never used within the flight safety industry or aviation, which prefers the term "flight recorder".[citation needed] The recorders are not permitted to be black in color, and must be bright orange, as they are intended to be spotted and recovered after incidents.[19] The term "black box" has been popularised by the media in general.[citation needed] One explanation for popularization of the term "black box" comes from the early film-based design of flight data recorders, which required the inside of the recorder to be perfectly dark to prevent light leaks from corrupting the record, as in a photographer's darkroom.[20][21] Another explanation of the "black box" term popularization came from a meeting about Warren's "Red Egg", when afterwards a journalist told Warren: "This is a wonderful black box."[citation needed] The unit itself was based on an EMI
EMI
Minifon wire recorder (originally a 1950s espionage gadget from the West-German manufacturer Protona Monske) fitted into a perspex box firmly screwed together.[citation needed] Another possible origin of the term is World War II
World War II
RAF jargon. Prior to the end of the war in 1945, new electronic innovations, such as Oboe, GEE and H2S, were added to bombers on a regular basis. The prototypes were roughly covered in hand-made metal boxes, painted black to prevent reflections. After a time any piece of "new" electronics was referred to as the "box-of-tricks" (as illusionist box) or the "black box".[22] The first recorded use of the term "black box" in reference to flight data recorders and cockpit voice recorders was by Mr E. Newton of the AAIB at a meeting of the Aeronautical Research Council in August 1958.[23] Components[edit] Flight
Flight
data recorder[edit]

A typical flight recorder

Cockpit
Cockpit
voice recorder and flight data recorder, each with an underwater locator beacon on the front

An underwater locator beacon, with a ballpoint pen to provide scale

A Cockpit
Cockpit
Voice and Data Recorder (CVDR), with its attached ULB visible on the left side of the unit

A flight data recorder and a cockpit voice recorder installed on their mounting trays in the rear fuselage of an aircraft

A flight data recorder (FDR) (also ADR, for accident data recorder) is an electronic device employed to record instructions sent to any electronic systems on an aircraft. Another kind of flight recorder is the cockpit voice recorder (CVR), which records conversation in the cockpit, radio communications between the cockpit crew and others (including communication with air traffic control personnel), as well as ambient sounds.[citation needed] The data recorded by the FDR are used for accident and incident investigation. Due to their importance in investigating accidents, these ICAO-regulated devices are carefully engineered and constructed to withstand the force of a high speed impact and the heat of an intense fire. Contrary to the popular term "black box", the exterior of the FDR is coated with heat-resistant bright orange paint for high visibility in wreckage, and the unit is usually mounted in the aircraft's tail section, where it is more likely to survive a severe crash. Following an accident, the recovery of the FDR is usually a high priority for the investigating body, as analysis of the recorded parameters can often detect and identify causes or contributing factors.[24] Modern day FDRs receive inputs via specific data frames from the Flight
Flight
Data Acquisition Units (FDAU). They record significant flight parameters, including the control and actuator positions, engine information and time of day. There are 88 parameters required as a minimum under current US federal regulations (only 29 were required until 2002), but some systems monitor many more variables. Generally each parameter is recorded a few times per second, though some units store "bursts" of data at a much higher frequency if the data begin to change quickly. Most FDRs record approximately 17–25 hours of data in a continuous loop.[citation needed] It is required by regulations that an FDR verification check (readout) is performed annually in order to verify that all mandatory parameters are recorded.[citation needed] Modern FDRs are typically double wrapped in strong corrosion-resistant stainless steel or titanium, with high-temperature insulation inside. Modern FDRs are accompanied by an underwater locator beacon that emits an ultrasonic "ping" to aid in detection when submerged. These beacons operate for up to 30 days and are able to operate while immersed to a depth of up to 6,000 meters (20,000 ft).[25][26] Cockpit
Cockpit
voice recorder[edit]

Both side views of a cockpit voice recorder, one type of flight recorder

A cockpit voice recorder (CVR) is a flight recorder used to record the audio environment in the flight deck of an aircraft for the purpose of investigation of accidents and incidents. This is typically achieved by recording the signals of the microphones and earphones of the pilots' headsets and of an area microphone in the roof of the cockpit. The current applicable FAA
FAA
TSO is C123b titled Cockpit
Cockpit
Voice Recorder Equipment.[27] Where an aircraft is required to carry a CVR and uses digital communications the CVR is required to record such communications with air traffic control unless this is recorded elsewhere. As of 2008[update] it is an FAA
FAA
requirement that the recording duration is a minimum of two hours.[28] A standard CVR is capable of recording 4 channels of audio data for a period of 2 hours. The original requirement was for a CVR to record for 30 minutes, but this has been found to be insufficient in many cases, significant parts of the audio data needed for a subsequent investigation having occurred more than 30 minutes before the end of the recording. The earliest CVRs used analog wire recording, later replaced by analog magnetic tape. Some of the tape units used two reels, with the tape automatically reversing at each end. The original was the ARL Flight Memory Unit produced in 1957 by Australian
Australian
David Warren and an instrument maker named Tych Mirfield.[citation needed] Other units used a single reel, with the tape spliced into a continuous loop, much as in an 8-track cartridge. The tape would circulate and old audio information would be overwritten every 30 minutes. Recovery of sound from magnetic tape often proves difficult if the recorder is recovered from water and its housing has been breached. Thus, the latest designs employ solid-state memory and use digital recording techniques, making them much more resistant to shock, vibration and moisture. With the reduced power requirements of solid-state recorders, it is now practical to incorporate a battery in the units, so that recording can continue until flight termination, even if the aircraft electrical system fails. Like the FDR, the CVR is typically mounted in the rear of the airplane fuselage to maximize the likelihood of its survival in a crash.[29] Combined units[edit] With the advent of digital recorders, the FDR and CVR can be manufactured in one fireproof, shock proof, and waterproof container as a combined digital Cockpit
Cockpit
Voice and Data Recorder (CVDR). Currently a CVDR is manufactured by L-3 Communications[30] as well as other manufacturers. Solid state recorders became commercially practical in 1990, having the advantage of not requiring scheduled maintenance and making the data easier to retrieve. This was extended to the two-hour voice recording in 1995.[31] Additional equipment[edit] Since the 1970s, most large civil jet transports have been additionally equipped with a "quick access recorder" (QAR). This records data on a removable storage medium. Access to the FDR and CVR is necessarily difficult because of the requirement that they survive an accident. They also require specialized equipment to read the recording. The QAR recording medium is readily removable and is designed to be read by equipment attached to a standard desktop computer. In many airlines, the quick access recordings are scanned for 'events', an event being a significant deviation from normal operational parameters. This allows operational problems to be detected and eliminated before an accident or incident results. Many modern aircraft systems are digital or digitally controlled. Very often, the digital system will include Built-In Test Equipment which records information about the operation of the system. This information may also be accessed to assist with the investigation of an accident or incident. Specifications[edit]

Cockpit
Cockpit
voice recorder memory module of PR-GTD, a Gol Transportes Aéreos Boeing 737-8EH SFP, found in the Amazon in Mato Grosso, Brazil.

After the crash of Gol Transportes Aéreos Flight
Flight
1907, Brazilian Air Force personnel show the recovered flight data recorder

The design of today's FDR is governed by the internationally recognized standards and recommended practices relating to flight recorders which are contained in ICAO
ICAO
Annex 6 which makes reference to industry crashworthiness and fire protection specifications such as those to be found in the European Organisation for Civil Aviation Equipment[32] documents EUROCAE ED55, ED56 fiken A and ED112 (Minimum Operational Performance Specification for Crash Protected Airborne Recorder Systems). In the United States, the Federal Aviation Administration (FAA) regulates all aspects of US aviation, and cites design requirements in their Technical Standard Order,[33] based on the EUROCAE documents (as do the aviation authorities of many other countries). Currently, EUROCAE specifies that a recorder must be able to withstand an acceleration of 3400 g (33 km/s²) for 6.5 milliseconds. This is roughly equivalent to an impact velocity of 270 knots (310 mph; 500 km/h) and a deceleration or crushing distance of 45 cm.[34] Additionally, there are requirements for penetration resistance, static crush, high and low temperature fires, deep sea pressure, sea water immersion, and fluid immersion. EUROCAE ED-112 (Minimum Operational Performance Specification for Crash Protected Airborne Recorder Systems) defines the minimum specification to be met for all aircraft requiring flight recorders for recording of flight data, cockpit audio, images and CNS / ATM digital messages and used for investigations of accidents or incidents.[35] When issued in March 2003 ED-112 superseded previous ED-55 and ED-56A that were separate specifications for FDR and CVR. FAA
FAA
TSOs for FDR and CVR reference ED-112 for characteristics common to both types. In order to facilitate recovery of the recorder from an aircraft accident site they are required to be coloured bright yellow or orange with reflective surfaces. All are lettered "FLIGHT RECORDER DO NOT OPEN" on one side in English and the same in French on the other side. To assist recovery from submerged sites they must be equipped with an underwater locator beacon which is automatically activated in the event of an accident. Regulation[edit] In the investigation of the 1960 crash of Trans Australia
Australia
Airlines Flight
Flight
538 at Mackay (Queensland), the inquiry judge strongly recommended that flight recorders be installed in all (Australian) airliners. Australia
Australia
became the first country in the world to make cockpit-voice recording compulsory.[36][37]

The Digital Flight
Flight
Data Recorder from West Air Sweden Flight
Flight
294. All data was collected, even though the rest of the aircraft was heavily fragmented

The United States' first CVR rules were passed in 1964, requiring all turbine and piston aircraft with four or more engines to have CVRs by March 1, 1967.[38] As of 2008[update] it is an FAA
FAA
requirement that the CVR recording duration is a minimum of two hours,[28] following the NTSB recommendation that it should be increased from its previously-mandated 30-minute duration.[39] As of 2014[update], the United States requires flight data recorders and cockpit voice recorders on aircraft that have 20 or more passenger seats, or those that have six or more passenger seats, are turbine-powered, and require two pilots.[40] For US air carriers and manufacturers, the National Transportation Safety Board (NTSB) is responsible for investigating accidents and safety-related incidents. The NTSB also serves in an advisory role for many international investigations not under its formal jurisdiction. The NTSB does not have regulatory authority, but must depend on legislation and other government agencies to act on its safety recommendations.[41] In addition, 49 USC Section 1114(c) prohibits the NTSB from making the audio recordings public except by written transcript.[42] The ARINC
ARINC
Standards are prepared by the Airlines Electronic Engineering Committee (AEEC). The 700 Series of standards describe the form, fit, and function of avionics equipment installed predominately on transport category aircraft. The FDR is defined by ARINC Characteristic 747. The CVR is defined by ARINC
ARINC
Characteristic 757.[43] Proposed requirements[edit] Deployable recorders[edit] The NTSB recommended in 1999 that operators be required to install two sets of CVDR systems, with the second CVDR set being "deployable or ejectable". The "deployable" recorder combines the cockpit voice/flight data recorders and an emergency locator transmitter (ELT) in a single unit. The "deployable" unit would depart the aircraft before impact, activated by sensors. The unit is designed to "eject" and "fly" away from the crash site, to survive the terminal velocity of fall, to float on water indefinitely, and would be equipped with satellite technology for immediate location of crash impact site. The "deployable" CVDR technology has been used by the US Navy since 1993.[44] The recommendations would involve a massive retrofit program. However, government funding would negate cost objections from manufacturers and airlines. Operators would get both sets of recorders for free: they would not have to pay for the one set they are currently required by law to carry. The cost of the second "deployable/ejectable CVDR" (or "Black Box") was estimated at US$30 million for installation in 500 new aircraft (about $60,000 per new commercial plane).[citation needed] In the United States, the proposed SAFE Act calls for implementing the NTSB 1999 recommendations. However, so far the SAFE ACT legislation has failed to pass Congress, having been introduced in 2003 (H.R. 2632), in 2005 (H.R. 3336), and in 2007 (H.R. 4336).[45] Originally the "Safe Aviation
Aviation
Flight
Flight
Enhancement (SAFE) Act of 2003"[46] was introduced on June 26, 2003 by Congressman David Price (NC) and Congressman John Duncan (Tennessee) in a bipartisan effort to ensure investigators have access to information immediately following commercial accidents.[44] On July 19, 2005, a revised SAFE Act was introduced and referred to the Committee on Transportation and Infrastructure of the US House of Representatives. The bill was referred to the House Subcommittee on Aviation
Aviation
during the 108th, 109th, and 110th Congresses.[47][48][49] Image recorders[edit] The NTSB has asked for the installation of cockpit image recorders in large transport aircraft to provide information that would supplement existing CVR and FDR data in accident investigations. They have recommended that image recorders be placed into smaller aircraft that are not required to have a CVR or FDR.[50] The rationale is that what is seen on an instrument by the pilots of an aircraft is not necessarily the same as the data sent to the display device. This is particularly true of aircraft equipped with electronic displays (CRT or LCD). A mechanical instrument is likely to preserve its last indication, but this is not the case with an electronic display. Such systems, estimated to cost less than $8,000 installed, typically consist of a camera and microphone located in the cockpit to continuously record cockpit instrumentation, the outside viewing area, engine sounds, radio communications, and ambient cockpit sounds. As with conventional CVRs and FDRs, data from such a system is stored in a crash-protected unit to ensure survivability.[50] Since the recorders can sometimes be crushed into unreadable pieces, or even located in deep water, some modern units are self-ejecting (taking advantage of kinetic energy at impact to separate themselves from the aircraft) and also equipped with radio emergency locator transmitters and sonar underwater locator beacons to aid in their location.[citation needed] After Malaysia Airlines Flight
Flight
370[edit] On March 12, 2014, in response to the missing Malaysia Airlines Flight 370, David Price re-introduced the SAFE Act in the US House of Representatives.[51] The disappearance of Malaysia Airlines Flight
Flight
370 demonstrated the limits of the contemporary flight recorder technology, namely how physical possession of the flight recorder device is necessary to help investigate the cause of an aircraft incident. Considering the advances of modern communication, technology commentators called for flight recorders to be supplemented or replaced by a system that provides "live streaming" of data from the aircraft to the ground.[52][53][54] Furthermore, commentators called for the underwater locator beacon's range and battery life to be extended, as well as the outfitting of civil aircraft with the deployable flight recorders typically used in military aircraft. Previous to MH370, the investigators of the 2009 Air France Flight
Flight
447 urged to extend the battery life as "rapidly as possible" after the crash's flight recorders went unrecovered for over a year.[55] After Indonesia AirAsia Flight
Flight
8501[edit] On December 28, 2014, Indonesia AirAsia Flight
Flight
8501, en route from Surabaya, Indonesia, to Singapore, crashed in bad weather, killing all 155 passengers and seven crew on board.[56] On January 12 and 13, 2015, following the recovery of the flight recorders, an anonymous ICAO
ICAO
representative said: "The time has come that deployable recorders are going to get a serious look."[citation needed] Unlike military recorders, which jettison away from an aircraft, signaling their location to search and rescue bodies, recorders on commercial aircraft remain inside the fuselage. A second ICAO
ICAO
official said that public attention had "galvanized momentum in favour of ejectable recorders on commercial aircraft".[57] Cultural references[edit] The artwork for the band Rammstein's album Reise, Reise
Reise, Reise
is made to look like a CVR; it also includes a recording from a crash. The recording is from the last 1–2 minutes of the CVR of Japan Airlines Flight
Flight
123, which crashed on August 12, 1985, killing 520 people; JAL 123 is the deadliest single-aircraft disaster in history. Members of the performing arts collective Collective:Unconscious made a theatrical presentation[58] of a play called Charlie Victor Romeo with a script based on transcripts from CVR voice recordings of nine aircraft emergencies. The play features the famous United Airlines Flight
Flight
232 that landed in a cornfield near Sioux City, Iowa
Iowa
after suffering a catastrophic failure of one engine and most flight controls. Survivor, a novel by Chuck Palahniuk, is about a cult member who dictates his life story to a flight recorder before the plane runs out of fuel and crashes. See also[edit]

Aviation
Aviation
portal

Acronyms and abbreviations in avionics Black box
Black box
theory Data logger Emergency locator beacon Emergency position-indicating radiobeacon station Event data recorder Flight
Flight
operations quality assurance Korean Air Lines Flight
Flight
007 List of unrecovered flight recorders Quick access recorder Train event recorder Voyage data recorder

References[edit]

^ Jean-Claude Fayer, Vols d'essais: Le Centre d'Essais en Vol de 1945 à 1960, published by E.T.A.I. (Paris), 2001, 384 pages, ISBN 2-7268-8534-9 ^ Cite error: The named reference Baudouin-1 was invoked but never defined (see the help page). ^ Page 206 and 209 of Beaudouin & Beaudouin ^ "Mata-Hari or Black Box". Museums of Tampere. 1946. Archived from the original on October 19, 2017. Retrieved October 19, 2017.  ^ Australian
Australian
Research Laboratories ^ A Brief History of Black Boxes, Time Magazine, July 20, 2009, p. 22 ^ "Dave Warren – Inventor of the black box flight recorder". Defence Science and Technology Organisation. Archived from the original on July 6, 2011.  ^ " Australian
Australian
Research Laboratories". Apc-online.com. February 9, 2000. Retrieved March 11, 2014.  ^ "A Brief History of Black Boxes". Time Magazine. No. July 20. 2009. p. 22. Retrieved February 1, 2012.  ^ [US Patent 2,959,459 for Flight
Flight
Recorder by James J. Ryan; http://pdfpiw.uspto.gov/.piw?PageNum=0&docid=02959459] ^ [US Patent 3,075,192 for Coding Apparatus for Flight
Flight
Recorders by James J. Ryan; http://pdfpiw.uspto.gov/.piw?PageNum=0&docid=03075192] ^ " Aviation
Aviation
History - Books, Facts, News, Photos / Art Gallery". aviationhistory.org.  ^ a b " Cockpit
Cockpit
Sound Recorder". Google Patents. Google Inc. Retrieved 31 December 2013.  ^ "Airplane ‘Black Box’ Flight
Flight
Recorder Technology, How it Works". Slyck News, March 13, 2014 ^ " Why Are Cockpit
Cockpit
Voice Recorders Painted Orange and Called a Black Box?". Guardian Liberty Voice, By Jerry Nelson on March 8, 2014 ^ [American Aviation
Aviation
Historical Society Fall-Winter 2014 Journal http://www.aahs-online.org/journals/journal_template.php?vol_no=v59n34] ^ "The Flight
Flight
Data Recorder". Aviation
Aviation
Digest, May 11, 2015, page 58. ^ US Patent 3,327,067 for Cockpit
Cockpit
Sound Recorder by Edmund A. Boniface, Jr.; http://pdfpiw.uspto.gov/.piw?PageNum=0&docid=03327067 ^ "France to resume 'black box' hunt". BBC News. December 13, 2009. Retrieved April 30, 2010.  ^ page 210 of Beaudouin & Beaudouin ^ "Beyond the Black Box". IEEE Spectrum. July 30, 2010. Retrieved April 28, 2014.  ^ "radar – 1946 – 0844 – Flight
Flight
Archive". flightglobal.com.  ^ [1] Archived January 24, 2014, at the Wayback Machine. ^ " Flight
Flight
Data Recorder Systems" (PDF). Federal Aviation Administration. April 10, 2007. Section 3 Point B. Retrieved April 8, 2010.  ^ " Flight
Flight
Data Recorder OSA".  ^ "SSFDR Solid State Flight
Flight
Data Recorder, ARINC
ARINC
747 - TSO C 124 - ED 55" (PDF). Archived from the original (PDF) on November 8, 2012.  ^ " Cockpit
Cockpit
Voice Recorder Equipment" (PDF). Federal Aviation Administration. June 1, 2006. Retrieved April 21, 2007.  ^ a b "Federal Aviation
Aviation
Regulation Sec. 121.359(h)(i)(2), amendment 338 and greater – Cockpit
Cockpit
voice recorders". Risingup.com. Retrieved February 7, 2013.  ^ "Federal Aviation
Aviation
Regulation Sec. 23.1457 – Cockpit
Cockpit
voice recorders". Risingup.com. Retrieved February 7, 2013.  ^ "L-3 Aviation
Aviation
Recorders". l-3ar.com.  ^ "History of Flight
Flight
Recorders". L3 Flight
Flight
Recorders. Archived from the original on December 11, 2013.  ^ Luftfahrt. "European Organisation for Civil Aviation
Aviation
Equipment". Eurocae.net. Retrieved March 11, 2014.  ^ "TSO-C124a FAA
FAA
Regs". Airweb.faa.gov. May 23, 2006. Retrieved March 11, 2014.  ^ " Black box
Black box
flight recorders". ATSB. April 1, 2014.  ^ [2] Archived August 11, 2007, at the Wayback Machine. ^ "Dave Warren - Inventor of the black box flight recorder". Defence Science and Technology Organisation. March 29, 2005. Archived from the original on May 22, 2010. Retrieved April 20, 2010.  ^ Campbell, Neil. "The Evolution of Flight
Flight
Data Analysis" (PDF). Proc. Australian
Australian
Society of Air Safety Investigators conference, 2007.  ^ Nick Komos (August 1989). Air Progress: 76.  Missing or empty title= (help) ^ "2011 Most Wanted List Page. Recorders." NTSB Archived August 4, 2014, at the Wayback Machine. ^ >U.S. Code of Federal Regulations (April 25, 2010). "14 CFR 91.609". Legal Information Institute. Cornell Law School. Retrieved June 17, 2016.  ^ >"History of the NTSB". NTSB Official Site. Retrieved June 17, 2016.  ^ http://www.ntsb.gov/investigations/process/Documents/CVR_Handbook.pdf ^ " ARINC
ARINC
Store, 700 series".  ^ a b " Aviation
Aviation
Today". aviationtoday.com. Archived from the original on March 25, 2014.  ^ "Safe Aviation
Aviation
and Flight
Flight
Enhancement Act of 2005 (2005; 109th Congress H.R. 3336) - GovTrack.us". GovTrack.us.  ^ "Text of the Safe Aviation
Aviation
and Flight
Flight
Enhancement Act-((SAFE) Act of 2003)". Retrieved August 2, 2015 – via govtrack.us.  ^ "Bill Text - 108th Congress (2003-2004) - THOMAS (Library of Congress)". Thomas.loc.gov. Retrieved March 11, 2014.  ^ "Bill Text - 109th Congress (2005-2006) - THOMAS (Library of Congress)". Thomas.loc.gov. Retrieved March 11, 2014.  ^ "Bill Text - 110th Congress (2007-2008) - THOMAS (Library of Congress)". Thomas.loc.gov. Retrieved March 11, 2014.  ^ a b "NTSB — Most Wanted". Ntsb.gov. Archived from the original on November 3, 2013. Retrieved March 11, 2014.  ^ Jansen, Bart. "Lawmaker urges 'black boxes' that eject from planes". USA Today.  ^ "Malaysia Airlines flight MH370 makes it clear: we need to rethink black boxes Stephen Trimble Comment is free". theguardian.com. Retrieved March 31, 2014.  ^ "Malaysia Airlines MH370: Why airlines don't live-stream black box data". Technology & Science. CBC News. August 4, 2005. Retrieved March 31, 2014.  ^ Yu, Yijun. "If we’d used the cloud, we might know where MH370 is now", The Conversation (website), London, March 18, 2014. Retrieved on August 21, 2014. ^ "MH370: Expert demands better black box technology". The Sydney Morning Herald.  ^ "AirAsia QZ8501: More bad weather hits AirAsia search". BBC News. January 1, 2015.  ^ "AirAsia crash makes case for ejectable black boxes". Reuters. Retrieved January 14, 2015.  ^ "Collective: Unconscious". Charlievictorromeo.com. July 3, 2012. Retrieved February 7, 2013. 

Cite error: A list-defined reference named "Beaudouin-1" is not used in the content (see the help page).

Further reading[edit]

American Aviation
Aviation
Historical Society, Volume 59, Fall-Winter 2014, "Edmund A. Boniface, Jr.: Inventing the Cockpit
Cockpit
Sound Recorder" (Extraordinary), "Extraordinary Inventor", U of A Engineer Magazine, Winter 2005 (Survivors), "Saving Survivors by Finding Fallen Aircrafts (sic)", NRC, 2008-03-05 Jeremy Sear, "The ARL ‘Black Box’ Flight
Flight
Recorder", University of Melbourne, October 2001 Siegel, Greg (2014). "Chapter 3. Black Boxes". Forensic Media: Reconstructing Accidents in Accelerated Modernity. Duke University Press. pp. 89–142. ISBN 978-0-8223-7623-1.  Wyatt, David; Mike Tooley (2009). "Chapter 18. Flight
Flight
data and cockpit voice recorders". Aircraft
Aircraft
Electrical and Electronic Systems. Routledge. p. 321. ISBN 978-1-136-44435-7.  Ben Hargreaves (Apr 13, 2017). " Flight
Flight
Data Recorder Evolution: Where Next?". MRO-network. Aviation
Aviation
Week. Could flight data recorders evolve to be useful in preventative maintenance as well?. 

External links[edit]

Wikimedia Commons has media related to Cockpit
Cockpit
voice recorders.

Wikimedia Commons has media related to Flight
Flight
data recorders.

'The ARL 'Black Box' Flight
Flight
Recorder': Melbourne University history honours thesis on the development of the first cockpit voice recorder by David Warren Finnish Mata-Hari Flight
Flight
Recorder in Museums of Tampere
Tampere
City "Beyond the Black Box: Instead of storing flight data on board, aircraft could easily send the information in real time to the ground," by Krishna M. Kavi, IEEE Spectrum, August 2010 "A crash course in transportation safety". Archived from the original on February 11, 2009. Retrieved 2014-04-07.  David Warren interview transcript 2002, ABC TV (Australia) David Warren interview transcript 2003, ABC TV (Australia) etep, Flight
Flight
Recorder designer Heavy Vehicle EDR information site for black box technology How Black Boxes Work at HowStuffWorks IRIG 106 Chapter 10: Flight
Flight
data recorder digital recorder standard Public domain photos of recorders Cockpit
Cockpit
Voice Recorder Database Popular Mechanics, March 19, 2008 "His Crashes Helped Make Ours Less Dangerous" US 3075192  James J. Ryan: "Coding Apparatus for Flight
Flight
Recorders and the Like" First modern flight recorder "Mata Hari" at display in Tampere
Tampere
museum Vapriikki.

v t e

Aircraft
Aircraft
components and systems

Airframe
Airframe
structure

Aft pressure bulkhead Cabane strut Canopy Cruciform tail Dope Empennage Fabric covering Fairing Flying wires Former Fuselage Hardpoint Interplane strut Jury strut Leading edge Lift strut Longeron Nacelle Rib Ring tail Spar Stabilizer Stressed skin Strut T-tail Tailplane Trailing edge Triple tail Twin tail Vertical stabilizer V-tail Y-tail Wing root Wing tip Wingbox

Flight
Flight
controls

Aileron Airbrake Artificial feel Autopilot Canard Centre stick Deceleron Dive brake Electro-hydraulic actuator Elevator Elevon Flaperon Flight
Flight
control modes Fly-by-wire Gust lock Rudder Servo tab Side-stick Spoiler Spoileron Stabilator Stick pusher Stick shaker Trim tab Wing warping Yaw damper Yoke

Aerodynamic and high-lift devices

Active Aeroelastic Wing Adaptive compliant wing Blown flap Channel wing Dog-tooth Droop Flap Gouge flap Gurney flap Krueger flap Leading edge
Leading edge
cuff LEX Slats Slot Stall strips Strake Variable-sweep wing Vortex generator Vortilon Wing fence Winglet

Avionic and flight instrument systems

ACAS Air data computer Airspeed indicator Altimeter Annunciator panel Attitude indicator Compass Course deviation indicator EFIS EICAS Flight
Flight
management system Glass cockpit GPS Heading indicator Horizontal situation indicator INS Pitot-static system Radar altimeter TCAS Transponder Turn and slip indicator Vertical Speed Indicator Yaw string

Propulsion controls, devices and fuel systems

Autothrottle Drop tank FADEC Fuel tank Gascolator Inlet cone Intake ramp NACA cowling Self-sealing fuel tank Splitter plate Throttle Thrust
Thrust
lever Thrust
Thrust
reversal Townend ring Wet wing

Landing and arresting gear

Arrestor hook Autobrake Conventional landing gear Drogue parachute Landing gear Landing gear
Landing gear
extender Oleo strut Tricycle landing gear Tundra tire

Escape systems

Ejection seat Escape crew capsule

Other systems

Aircraft
Aircraft
lavatory Auxiliary power unit Bleed air
Bleed air
system Deicing boot Emergency oxygen system Flight
Flight
data recorder Entertainment system Environmental control system Hydraulic system Ice protection system Landing lights Navigation light Passenger service unit Ram air turbine Weeping wing

v t e

Jet engines and aircraft gas turbines

Gas turbines and jet propulsion

Types

Propfan Turbofan Turbojet Turboprop Turboshaft Ramjet Rocket

Mechanical components

Accessory drive Air intake Afterburner
Afterburner
(reheat) Axial compressor Centrifugal compressor Combustor Constant speed drive Propelling nozzle Turbine blade

Principles

Aircraft
Aircraft
engine starting Bleed air Brayton cycle Bypass ratio Compressor stall Engine pressure ratio (EPR) Flameout Jet engine
Jet engine
performance Overall pressure ratio Propulsive efficiency Specific impulse Thrust Thrust
Thrust
lapse Thrust
Thrust
specific fuel consumption Thrust
Thrust
to weight ratio Variable cycle engine Windmill restart

Propellers

Components

Propeller governor Propeller speed reduction unit

Principles

Autofeather Blade pitch Constant-speed Contra-rotating Counter-rotating Proprotor Scimitar Variable-pitch

Engine instruments

Annunciator panel Electronic centralised aircraft monitor (ECAM) Electronic flight instrument system
Electronic flight instrument system
(EFIS) Engine-indicating and crew-alerting system
Engine-indicating and crew-alerting system
(EICAS) Flight
Flight
data recorder Glass cockpit

Engine controls

Autothrottle Full Authority Digital Engine/Electronics (FADEC) Thrust
Thrust
lever Thrust
Thrust
reversal

Fuel and induction systems

Jet fuel

Other systems

Air-start system Auxiliary power unit
Auxiliary power unit
(APU) Bleed air
Bleed air
system Hydraulic system Ice protection system

v t e

Commercial air travel

Airlines

Airline
Airline
codes Airline
Airline
holding companies Charter airlines Low-cost airlines Passenger airlines Regional airlines

Alliances

Oneworld SkyTeam Star Alliance Value Alliance Vanilla Alliance U-FLY Alliance

Trade groups

International (ACO ATAG IATA IATAN ISTAT) United States (A4A RAA) Europe (AEA EBAA ELFAA ERA) Other regions (AACO AAPA AFRAA RAAA)

Aircrew

Captain First Officer Second
Second
Officer Third Officer Flight
Flight
attendant Flight
Flight
engineer Loadmaster Pilot Purser Deadheading

Airliner

Travel class

First class (aviation) First class travel Business Premium economy Economy

Aircraft
Aircraft
cabin Aircraft
Aircraft
lavatory Aircraft
Aircraft
seat map Airline
Airline
meal Airline
Airline
seat Buy on board Crew rest compartment In-flight entertainment Inflight smoking Galley Sickness bag

Airport

Aerodrome Airline
Airline
hub Airport
Airport
check-in Airport
Airport
lounge Airport
Airport
rail link Airport
Airport
terminal Airstair Boarding Domestic airport Gate International airport Jet bridge Low cost carrier terminal Runway Transit hotel

Customs
Customs
/ Immigration

Arrival card
Arrival card
(Landing card) Border control Departure card Passport Timatic Travel document Visa

Environmental impact

Hypermobility Impact on environment

Law

Air transport agreement

Bermuda Agreement
Bermuda Agreement
(UK-US, 1946-78) Bermuda II Agreement (UK-US, 1978-2008) China-US Cross-Strait charter
Cross-Strait charter
(China-Taiwan)

Beijing Convention Cape Town Treaty Chicago Convention Convention on the Marking of Plastic Explosives European Common Aviation
Aviation
Area Flight
Flight
permit Freedoms of the air Hague Hijacking Convention Hague Protocol ICAO Montreal Convention Open skies
Open skies
(EU–US Open Skies Agreement) Paris Convention of 1919 Rome Convention Sabotage Convention Tokyo Convention Warsaw Convention

Luggage

Bag tag Baggage
Baggage
allowance Baggage
Baggage
carousel Baggage
Baggage
cart Baggage
Baggage
reclaim Baggage
Baggage
handler Baggage
Baggage
handling system Checked baggage Hand luggage Lost luggage Luggage lock

Safety

Air Navigation and Transport Act Air rage Air traffic control
Air traffic control
(ATC) Aircraft
Aircraft
safety card Airport
Airport
authority Airport
Airport
crash tender Airport
Airport
police Airport
Airport
security Brace position Evacuation slide Flight
Flight
recorder National aviation authority Overwing exits Pre-flight safety demonstration Sky marshal Unruly aircraft passenger

Ticketing

Airline
Airline
booking ploys Airline
Airline
reservations system Airline
Airline
ticket Airline
Airline
timetable Bereavement flight Boarding pass Codeshare agreement Continent pass Electronic ticket Fare basis code Flight
Flight
cancellation and delay Frequent-flyer program Government contract flight One-way travel Open-jaw ticket Passenger name record Red-eye flight Round-the-world ticket Standby Tracking Travel agency Travel website

Groundcrew

Aircraft
Aircraft
maintenance technician Aircraft
Aircraft
ground handler Baggage
Baggage
handler Flight
Flight
dispatcher

Miscellaneous

Mile high club

 This article incorporates public domain material from websites or documents of the National Transportation S

.