Velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Constant velocity vs acceleration To have a ''constant velocity'', an object must have a constant speed in a constant direction. Constant directi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Velocity Vs Time Graph
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value ( magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Constant velocity vs acceleration To have a ''constant velocity'', an object must have a constant speed in a constant direction. Constant direction co ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Kinematics
Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics. Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering, robotics, and biomechanics kinematics is us ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Kinematics
Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics. Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering, robotics, and biomechanics kinematics is us ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Motion
In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and measuring the change in position of the body relative to that frame with change in time. The branch of physics describing the motion of objects without reference to its cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics. If an object is not changing relative to a given frame of reference, the object is said to be ''at rest'', ''motionless'', ''immobile'', '' stationary'', or to have a constant or timeinvariant position with reference to its surroundings. Modern physics holds that, as there is no absolute frame of reference, Newton's concept of '' absolute motion'' cannot be determined. As such, everything in the universe can be considered to be in motion. Motion applies to variou ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Classical Mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The earliest development of classical mechanics is often referred to as Newtonian mechanics. It consists of the physical concepts based on foundational works of Sir Isaac Newton, and the mathematical methods invented by Gottfried Wilhelm Leibniz, JosephLouis Lagrange, Leonhard Euler, and other contemporaries, in the 17th century to describe the motion of bodies under the influence of a system of forces. Later, more abstract methods were developed, leading to the reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics. These advance ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the ''net'' force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes: * the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force; * that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass. The SI unit for acceleration is metre per second squared (, \mathrm). For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ... of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity. The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; the instantaneous speed is the limit (mathematics), limit of the average speed as the duration of the time interval approaches zero. Speed is #Difference between speed and velocity, not the same as velocity. Speed has the dimensional analysis, dimensions of distance divided by time. The International System of Units, SI unit of speed is the metre per s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Miles Per Hour
Miles per hour (mph, m.p.h., MPH, or mi/h) is a British imperial and United States customary unit of speed expressing the number of miles travelled in one hour. It is used in the United Kingdom, the United States, and a number of smaller countries, most of which are UK or US territories, or have close historical ties with the UK or US. Usage Road traffic Speed limits and road traffic speeds are given in miles per hour in the following jurisdictions: * Antigua and Barbuda * Bahamas *Belize * Dominica * Grenada * Liberia (occasionally) * Marshall Islands * Micronesia * Palau * Saint Kitts and Nevis * Saint Lucia * Saint Vincent and the Grenadines * Samoa (along with kilometres per hour) *United Kingdom *The following British Overseas Territories: ** Anguilla ** British Virgin Islands **British Indian Ocean Territory ** Cayman Islands ** Falkland Islands ** Montserrat ** Saint Helena, Ascension and Tristan da Cunha ** Turks and Caicos Islands *The Crown dependenci ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Scalar (physics)
In physics, scalars (or scalar quantities) are physical quantities that are unaffected by changes to a vector space basis (i.e., a coordinate system transformation). Scalars are often accompanied by units of measurement, as in "10 cm". Examples of scalar quantities are mass, distance, charge, volume, time, speed, and the magnitude of physical vectors in general (such as velocity). A change of a vector space basis changes the description of a vector in terms of the basis used but does not change the vector itself, while a scalar has nothing to do with this change. In classical physics, like Newtonian mechanics, rotations and reflections preserve scalars, while in relativity, Lorentz transformations or spacetime translations preserve scalars. The term "scalar" has origin in the multiplication of vectors by a unitless scalar, which is a ''uniform scaling'' transformation. Relationship with the mathematical concept A scalar in physics is also a scalar in mathematics, as an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Vector (geometry)
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a '' directed line segment'', or graphically as an arrow connecting an ''initial point'' ''A'' with a ''terminal point'' ''B'', and denoted by \overrightarrow . A vector is what is needed to "carry" the point ''A'' to the point ''B''; the Latin word ''vector'' means "carrier". It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from ''A'' to ''B''. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operati ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Position (vector)
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents the position of a point ''P'' in space in relation to an arbitrary reference origin ''O''. Usually denoted x, r, or s, it corresponds to the straight line segment from ''O'' to ''P''. In other words, it is the displacement or translation that maps the origin to ''P'': :\mathbf=\overrightarrow The term "position vector" is used mostly in the fields of differential geometry, mechanics and occasionally vector calculus. Frequently this is used in twodimensional or threedimensional space, but can be easily generalized to Euclidean spaces and affine spaces of any dimension.Keller, F. J, Gettys, W. E. et al. (1993), p 28–29 Relative position The relative position of a point ''Q'' with respect to point ''P'' is the Euclidean vector resulting from the subtraction of the two absolute position vectors (each with respect to the origin): :\Delta \m ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Time Derivative
A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function. The variable denoting time is usually written as t. Notation A variety of notations are used to denote the time derivative. In addition to the normal ( Leibniz's) notation, :\frac A very common shorthand notation used, especially in physics, is the 'overdot'. I.E. :\dot (This is called Newton's notation) Higher time derivatives are also used: the second derivative with respect to time is written as :\frac with the corresponding shorthand of \ddot. As a generalization, the time derivative of a vector, say: : \mathbf v = \left v_1,\ v_2,\ v_3, \ldots \right is defined as the vector whose components are the derivatives of the components of the original vector. That is, : \frac = \left \frac,\frac ,\frac , \ldots \right . Use in physics Time derivatives are a key concept in physics. For example, for a changing position x, its ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 