Amplitude versus offset
   HOME

TheInfoList



OR:

In
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
and reflection seismology, amplitude versus offset (AVO) or amplitude variation with offset is the general term for referring to the dependency of the
seismic attribute In reflection seismology, a seismic attribute is a quantity extracted or derived from seismic data that can be analysed in order to enhance information that might be more subtle in a traditional seismic image, leading to a better geological or geo ...
,
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
, with the distance between the source and receiver (the offset). AVO analysis is a technique that
geophysicists Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
can execute on seismic data to determine a rock's fluid content,
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measur ...
,
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
or
seismic velocity A seismic wave is a wave of acoustic energy that travels through the Earth. It can result from an earthquake, volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic energy. ...
, shear wave information, fluid indicators (hydrocarbon indications). The phenomenon is based on the relationship between the
reflection coefficient In physics and electrical engineering the reflection coefficient is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected w ...
and the angle of incidence and has been understood since the early 20th century when Karl Zoeppritz wrote down the Zoeppritz equations. Due to its physical origin, AVO can also be known as amplitude versus angle (AVA), but AVO is the more commonly used term because the offset is what a geophysicist can vary in order to change the angle of incidence. (See diagram)


Background and theory

For a seismic wave reflecting off an interface between two media at
normal incidence The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as o ...
, the expression for the reflection coefficient is relatively simple: :R=\frac, where Z_0 and Z_1 are the
acoustic impedance Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cu ...
s of the first and second medium, respectively. The situation becomes much more complicated in the case of non-normal incidence, due to mode conversion between
P-waves A P wave (primary wave or pressure wave) is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any ...
and
S-waves __NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because th ...
, and is described by the Zoeppritz equations.


Zoeppritz equations

In 1919, Karl Bernhard Zoeppritz derived four equations that determine the amplitudes of reflected and
refracted In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomeno ...
waves at a planar interface for an incident P-wave as a function of the angle of incidence and six independent elastic parameters. These equations have 4 unknowns and can be solved but they do not give an intuitive understanding for how the reflection amplitudes vary with the rock properties involved.Shuey, R. T.
985 Year 985 ( CMLXXXV) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. Events By place Europe * Summer – Henry II (the Wrangler) is restored as duke of Bavaria by Empress Theoph ...
A simplification of the Zoeppritz equations. Geophysics, 50:609–614


Richards and Frasier (1976), Aki and Richards (1980)

P. Richards and C. Frasier expanded the terms for the reflection and transmission coefficients for a P-wave incident upon a solid-solid interface and simplified the result by assuming only small changes in elastic properties across the interface. Therefore, the squares and differential products are small enough to tend to zero and be removed. This form of the equations allows one to see the effects of density and P- or S- wave velocity variations on the reflection amplitudes. This approximation was popularized in the 1980 book ''Quantitative Seismology'' by K. Aki and P. Richards and has since been commonly referred to as the Aki and Richards approximation.


Ostrander (1980)

Ostrander was the first to introduce a practical application of the AVO effect, showing that a gas sand underlying a shale exhibited amplitude variation with offset.


Shuey (1985)

Shuey further modified the equations by assuming – as Ostrander had – that
Poisson's ratio In materials science and solid mechanics, Poisson's ratio \nu ( nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Po ...
was the elastic property most directly related to the angular dependence of the reflection coefficient. This gives the 3-term Shuey Equation:Avseth, P, T Mukerji and G Mavko (2005). Quantitative seismic interpretation. Cambridge University Press, Cambridge, UK :R(\theta ) = R(0) + G \sin^2 \theta + F ( \tan^2 \theta - \sin^2 \theta ) where :R(0) = \frac \left ( \frac + \frac \right ) and :G = \frac \frac - 2 \frac \left ( \frac + 2 \frac \right ) ; F = \frac\frac where =angle of incidence; = P-wave velocity in medium; = P-wave velocity contrast across interface; = S-wave velocity in medium; = S-wave velocity contrast across interface; = density in medium; = density contrast across interface; In the Shuey equation, R(0) is the reflection coefficient at normal incidence and is controlled by the contrast in acoustic impedances. G, often referred to as the AVO gradient, describes the variation of reflection amplitudes at intermediate offsets and the third term, F, describes the behaviour at large angles/far offsets that are close to the critical angle. This equation can be further simplified by assuming that the angle of incidence is less than 30 degrees (i.e. the offset is relatively small), so the third term will tend to zero. This is the case in most seismic surveys and gives the "Shuey Approximation": :R(\theta ) = R(0) + G \sin^2 \theta This was the final development needed before AVO analysis could become a commercial tool for the oil industry.


Use

Modern
seismic reflection Reflection seismology (or seismic reflection) is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflection (physics), reflected seismic waves. The method require ...
surveys are designed and acquired in such a way that the same point on the subsurface is sampled multiple times, with each sample having a different source and receiver location. The seismic data is then carefully processed to preserve seismic amplitudes and accurately determine the spatial coordinates of each sample. This allows a geophysicist to construct a group of traces with a range of offsets that all sample the same subsurface location in order to perform AVO analysis. This is known as a Common Midpoint Gather (a midpoint being the area of the subsurface that a seismic wave reflects off before returning to the receiver) and in a typical seismic reflection processing workflow, the average amplitude would be calculated along the time sample, in a process known as "stacking". This process significantly reduces random noise but loses all information that could be used for AVO analysis.Young, R. & LoPiccolo, R. 2005. AVO analysis demystified. E&P. https://e-seis.com/wp-content/uploads/2014/11/AVO-Analysis-Demystified.pdf


AVO crossplots

A CMP gather is constructed, the traces are conditioned so that they reference the same two-way travel time, sorted in order of increasing offset and the amplitude of each trace at a specific time horizon is extracted. Remembering the 2-term Shuey Approximation, the amplitude of each trace is plotted against sin^2 of its offset and the relationship becomes linear, as seen in the diagram. Using linear regression, a line of best fit can now be calculated that describes how the reflection amplitude varies with offset using just 2 parameters: the intersect, P, and the gradient, G. As per the Shuey approximation, the intersect P corresponds to R(0), the reflection amplitude at zero-offset, and the gradient G describes the behaviour at non-normal offset, a value known as the AVO gradient. Plotting P (or R(0)) against G for every time sample in every CMP gather produces an AVO crossplot and can be interpreted in a number of ways.


Interpretation

An AVO anomaly is most commonly expressed as increasing (rising) AVO in a sedimentary section, often where the hydrocarbon reservoir is "softer" (lower
acoustic impedance Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cu ...
) than the surrounding shales. Typically amplitude decreases (falls) with offset due to geometrical spreading, attenuation and other factors. An AVO anomaly can also include examples where amplitude with offset falls at a lower rate than the surrounding reflective events.


Applications in the oil and gas industry

The most important application of AVO is the detection of hydrocarbon reservoirs. Increasing AVO is usually present in oil-bearing sediments with at least 10% gas saturation, but is especially pronounced in porous, low-density gas-bearing sediments with little to no oil. Particularly important examples are those seen in Middle Tertiary gas sands of the coastal counties of Southeast Texas,
turbidite A turbidite is the geologic deposit of a turbidity current, which is a type of amalgamation of fluidal and sediment gravity flow responsible for distributing vast amounts of clastic sediment into the deep ocean. Sequencing Turbidites wer ...
sands such as the Late Tertiary deltaic sediments in the
Gulf of Mexico The Gulf of Mexico ( es, Golfo de México) is an ocean basin and a marginal sea of the Atlantic Ocean, largely surrounded by the North American continent. It is bounded on the northeast, north and northwest by the Gulf Coast of the United ...
(especially during the 1980s–1990s), West Africa, and other major
deltas A river delta is a landform shaped like a triangle, created by deposition of sediment that is carried by a river and enters slower-moving or stagnant water. This occurs where a river enters an ocean, sea, estuary, lake, reservoir, or (more rarel ...
around the world. Most major companies use AVO routinely as a tool to "de-risk" exploration targets and to better define the extent and the composition of existing hydrocarbon reservoirs.


AVO is not fail-safe

An important caveat is that the existence of abnormally rising or falling amplitudes can sometimes be caused by other factors, such as alternative lithologies and residual hydrocarbons in a breached gas column. Not all oil and gas fields are associated with an obvious AVO anomaly (e.g. most of the oil found in the
Gulf of Mexico The Gulf of Mexico ( es, Golfo de México) is an ocean basin and a marginal sea of the Atlantic Ocean, largely surrounded by the North American continent. It is bounded on the northeast, north and northwest by the Gulf Coast of the United ...
in the last decade), and AVO analysis is by no means a panacea for gas and
oil exploration Hydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for deposits of hydrocarbons, particularly petroleum and natural gas, in the Earth using petroleum geology. Exploration methods Vis ...
.


References

{{reflist, colwidth=30em


External links

*http://sepwww.stanford.edu/public/docs/sep73/carlos2/paper_html/node5.html Seismology measurement Petroleum geology