structural engineering
   HOME

TheInfoList



OR:

Structural engineering is a sub-discipline of
civil engineering Civil engineering is a regulation and licensure in engineering, professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads ...
in which
structural engineer Structural engineers analyze, design, plan, and research List of structural elements, structural components and structural systems to achieve design goals and ensure the safety and comfort of users or occupants. Their work takes account mainly of ...
s are trained to design the 'bones and joints' that create the form and shape of human-made structures. Structural engineers also must understand and calculate the stability, strength, rigidity and earthquake-susceptibility of built structures for
building A building or edifice is an enclosed Structure#Load-bearing, structure with a roof, walls and window, windows, usually standing permanently in one place, such as a house or factory. Buildings come in a variety of sizes, shapes, and functions, a ...
s and
nonbuilding structure A nonbuilding structure, often referred to simply as a structure, is any built structure or construction structure that is not a building, i.e. not designed for continuous human occupancy. The term is particularly used by architects, st ...
s. The structural designs are integrated with those of other designers such as
architects An architect is a person who plans, designs, and oversees the construction of buildings. To practice architecture means to provide services in connection with the design of buildings and the space within the site surrounding the buildings that h ...
and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering. Structural engineering theory is based upon applied
physical laws Scientific laws or laws of science are statements, based on reproducibility, repeated experiments or observations, that describe or prediction, predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, a ...
and
empirical Empirical evidence is evidence obtained through sense experience or experimental procedure. It is of central importance to the sciences and plays a role in various other fields, like epistemology and law. There is no general agreement on how t ...
knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural concepts to build complex structural systems. Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals.


History

Structural engineering dates back to 2700 B.C. when the step pyramid for Pharaoh
Djoser Djoser (also read as Djeser and Zoser) was an ancient Egyptian pharaoh of the 3rd Dynasty during the Old Kingdom, and was the founder of that epoch. He is also known by his Hellenized names Tosorthros (from Manetho) and Sesorthos (from Euse ...
was built by Imhotep, the first engineer in history known by name. Pyramids were the most common major structures built by ancient civilizations because the structural form of a pyramid is inherently stable and can be almost infinitely scaled (as opposed to most other structural forms, which cannot be linearly increased in size in proportion to increased loads). The structural stability of the pyramid, whilst primarily gained from its shape, relies also on the strength of the stone from which it is constructed, and its ability to support the weight of the stone above it.CV The limestone blocks were often taken from a quarry near the building site and have a compressive strength from 30 to 250 MPa (MPa = Pa × 106). Therefore, the structural strength of the pyramid stems from the material properties of the stones from which it was built rather than the pyramid's geometry. Throughout ancient and medieval history most architectural design and construction were carried out by artisans, such as stonemasons and carpenters, rising to the role of master builder. No theory of structures existed, and understanding of how structures stood up was extremely limited, and based almost entirely on empirical evidence of 'what had worked before' and
intuition Intuition is the ability to acquire knowledge without recourse to conscious reasoning or needing an explanation. Different fields use the word "intuition" in very different ways, including but not limited to: direct access to unconscious knowledg ...
. Knowledge was retained by guilds and seldom supplanted by advances. Structures were repetitive, and increases in scale were incremental. No record exists of the first calculations of the strength of structural members or the behavior of structural material, but the profession of a structural engineer only really took shape with the Industrial Revolution and the re-invention of concrete (see History of Concrete). The physical sciences underlying structural engineering began to be understood in the Renaissance and have since developed into computer-based applications pioneered in the 1970s.


Timeline

* 1452–1519
Leonardo da Vinci Leonardo di ser Piero da Vinci (15 April 1452 - 2 May 1519) was an Italian polymath of the High Renaissance who was active as a painter, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially rested o ...
made many contributions. * 1638:
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
published the book '' Two New Sciences'' in which he examined the failure of simple structures. * 1660:
Hooke's law In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of ...
by
Robert Hooke Robert Hooke (; 18 July 16353 March 1703) was an English polymath who was active as a physicist ("natural philosopher"), astronomer, geologist, meteorologist, and architect. He is credited as one of the first scientists to investigate living ...
. * 1687:
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
published ''
Philosophiæ Naturalis Principia Mathematica (English: ''The Mathematical Principles of Natural Philosophy''), often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Lati ...
'', which contains his laws of motion. * 1750: Euler–Bernoulli beam equation. * 1700–1782:
Daniel Bernoulli Daniel Bernoulli ( ; ; – 27 March 1782) was a Swiss people, Swiss-France, French mathematician and physicist and was one of the many prominent mathematicians in the Bernoulli family from Basel. He is particularly remembered for his applicati ...
introduced the principle of virtual work. * 1707–1783:
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
developed the theory of
buckling In structural engineering, buckling is the sudden change in shape (Deformation (engineering), deformation) of a structural component under Structural load, load, such as the bowing of a column under Compression (physics), compression or the wrin ...
of columns. * 1826: Claude-Louis Navier published a treatise on the elastic behaviors of structures. * 1873: Carlo Alberto Castigliano presented his dissertation "Intorno ai sistemi elastici", which contains his theorem for computing displacement as the partial derivative of the strain energy. This theorem includes the method of "least work" as a special case. * 1874: Otto Mohr formalized the idea of a statically indeterminate structure. * 1922: Timoshenko corrects the Euler–Bernoulli beam equation. * 1936: Hardy Cross' publication of the moment distribution method, an important innovation in the design of continuous frames. * 1941: Alexander Hrennikoff solved the discretization of plane elasticity problems using a lattice framework. * 1942: Richard Courant divided a domain into finite subregions. * 1956: J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp's paper on the "Stiffness and Deflection of Complex Structures" introduces the name " finite-element method" and is widely recognized as the first comprehensive treatment of the method as it is known today.


Structural failure

The history of structural engineering contains many collapses and failures. Sometimes this is due to obvious negligence, as in the case of the Pétion-Ville school collapse, in which Rev. Fortin Augustin ''" constructed the building all by himself, saying he didn't need an engineer as he had good knowledge of construction"'' following a partial collapse of the three-story schoolhouse that sent neighbors fleeing. The final collapse killed 94 people, mostly children. In other cases structural failures require careful study, and the results of these inquiries have resulted in improved practices and a greater understanding of the science of structural engineering. Some such studies are the result of forensic engineering investigations where the original engineer seems to have done everything in accordance with the state of the profession and acceptable practice yet a failure still eventuated. A famous case of structural knowledge and practice being advanced in this manner can be found in a series of failures involving box girders which collapsed in Australia during the 1970s.


Theory

Structural engineering depends upon a detailed knowledge of applied mechanics,
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
, and
applied mathematics Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a ...
to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully a structural engineer generally requires detailed knowledge of relevant empirical and theoretical design codes, the techniques of
structural analysis Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on physical structures and their c ...
, as well as some knowledge of the
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
resistance of the materials and structures, especially when those structures are exposed to the external environment. Since the 1990s, specialist software has become available to aid in the design of structures, with the functionality to assist in the drawing, analyzing and designing of structures with maximum precision; examples include AutoCAD, StaadPro, ETABS, Prokon, Revit Structure, Inducta RCB, etc. Such software may also take into consideration environmental loads, such as earthquakes and winds.


Profession

Structural engineers are responsible for engineering design and structural analysis. Entry-level structural engineers may design the individual structural elements of a structure, such as the beams and columns of a building. More experienced engineers may be responsible for the structural design and integrity of an entire system, such as a building. Structural engineers often specialize in particular types of structures, such as buildings, bridges, pipelines, industrial, tunnels, vehicles, ships, aircraft, and spacecraft. Structural engineers who specialize in buildings may specialize in particular construction materials such as concrete, steel, wood, masonry, alloys and composites. Structural engineering has existed since humans first started to construct their structures. It became a more defined and formalized profession with the emergence of architecture as a distinct profession from engineering during the industrial revolution in the late 19th century. Until then, the architect and the structural engineer were usually one and the same thing – the master builder. Only with the development of specialized knowledge of structural theories that emerged during the 19th and early 20th centuries, did the professional structural engineers come into existence. The role of a structural engineer today involves a significant understanding of both static and dynamic loading and the structures that are available to resist them. The complexity of modern structures often requires a great deal of creativity from the engineer in order to ensure the structures support and resist the loads they are subjected to. A structural engineer will typically have a four or five-year undergraduate degree, followed by a minimum of three years of professional practice before being considered fully qualified. Structural engineers are licensed or accredited by different learned societies and regulatory bodies around the world (for example, the Institution of Structural Engineers in the UK). Depending on the degree course they have studied and/or the jurisdiction they are seeking licensure in, they may be accredited (or licensed) as just structural engineers, or as civil engineers, or as both civil and structural engineers. Another international organisation is IABSE(International Association for Bridge and Structural Engineering). The aim of that association is to exchange knowledge and to advance the practice of structural engineering worldwide in the service of the profession and society.


Specializations


Building structures

Structural building engineering is primarily driven by the creative manipulation of materials and forms and the underlying mathematical and scientific ideas to achieve an end that fulfills its functional requirements and is structurally safe when subjected to all the loads it could reasonably be expected to experience. This is subtly different from architectural design, which is driven by the creative manipulation of materials and forms, mass, space, volume, texture, and light to achieve an end which is aesthetic, functional, and often artistic. The structural design for a building must ensure that the building can stand up safely, able to function without excessive deflections or movements which may cause fatigue of structural elements, cracking or failure of fixtures, fittings or partitions, or discomfort for occupants. It must account for movements and forces due to temperature, creep, cracking, and imposed loads. It must also ensure that the design is practically buildable within acceptable manufacturing tolerances of the materials. It must allow the architecture to work, and the building services to fit within the building and function (air conditioning, ventilation, smoke extract, electrics, lighting, etc.). The structural design of a modern building can be extremely complex and often requires a large team to complete. Structural engineering specialties for buildings include: * Earthquake engineering * Façade engineering * Fire engineering * Roof engineering * Tower engineering * Wind engineering


Earthquake engineering structures

Earthquake engineering structures are those engineered to withstand
earthquake An earthquakealso called a quake, tremor, or tembloris the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they ...
s. The main objectives of earthquake engineering are to understand the interaction of
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
s with the shaking ground, foresee the consequences of possible earthquakes, and design and construct the structures to perform during an earthquake. Earthquake-proof structures are not necessarily extremely strong like the El Castillo pyramid at Chichen Itza shown above. One important tool of earthquake engineering is base isolation, which allows the base of a structure to move freely with the ground.


Civil engineering structures

Civil structural engineering includes all structural engineering related to the built environment. It includes: The structural engineer is the lead designer on these structures, and often the sole designer. In the design of structures such as these, structural safety is of paramount importance (in the UK, designs for dams, nuclear power stations and bridges must be signed off by a chartered engineer). Civil engineering structures are often subjected to very extreme forces, such as large variations in temperature, dynamic loads such as waves or traffic, or high pressures from water or compressed gases. They are also often constructed in corrosive environments, such as at sea, in industrial facilities, or below ground.


Mechanical engineering structures

The forces which parts of a machine are subjected to can vary significantly and can do so at a great rate. The forces which a boat or aircraft are subjected to vary enormously and will do so thousands of times over the structure's lifetime. The structural design must ensure that such structures can endure such loading for their entire design life without failing. These works can require mechanical structural engineering: * Boilers and pressure vessels * Coachworks and carriages * Cranes * Elevators *
Escalator An escalator is a moving staircase which carries people between floors of a building or structure. It consists of a Electric motor, motor-driven chain of individually linked steps on a track which cycle on a pair of tracks which keep the st ...
s * Marine vessels and hulls


Aerospace structures

Aerospace structure types include launch vehicles, (
Atlas An atlas is a collection of maps; it is typically a bundle of world map, maps of Earth or of a continent or region of Earth. Advances in astronomy have also resulted in atlases of the celestial sphere or of other planets. Atlases have traditio ...
,
Delta Delta commonly refers to: * Delta (letter) (Δ or δ), the fourth letter of the Greek alphabet * D (NATO phonetic alphabet: "Delta"), the fourth letter in the Latin alphabet * River delta, at a river mouth * Delta Air Lines, a major US carrier ...
, Titan), missiles (ALCM, Harpoon), Hypersonic vehicles (Space Shuttle),
military aircraft A military aircraft is any Fixed-wing aircraft, fixed-wing or rotorcraft, rotary-wing aircraft that is operated by a legal or insurrectionary military of any type. Some military aircraft engage directly in aerial warfare, while others take on su ...
(F-16, F-18) and commercial aircraft (
Boeing The Boeing Company, or simply Boeing (), is an American multinational corporation that designs, manufactures, and sells airplanes, rotorcraft, rockets, satellites, and missiles worldwide. The company also provides leasing and product support s ...
777, MD-11). Aerospace structures typically consist of thin plates with stiffeners for the external surfaces, bulkheads, and frames to support the shape and fasteners such as welds, rivets, screws, and bolts to hold the components together.


Nanoscale structures

A nanostructure is an object of intermediate size between molecular and microscopic (micrometer-sized) structures. In describing nanostructures it is necessary to differentiate between the number of dimensions on the nanoscale. Nanotextured surfaces have one dimension on the nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes have two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100 nm; its length could be much greater. Finally, spherical nanoparticles have three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into the micrometer range. The term 'nanostructure' is often used when referring to magnetic technology.


Structural engineering for medical science

Medical equipment (also known as armamentarium) is designed to aid in the diagnosis, monitoring or treatment of medical conditions. There are several basic types: diagnostic equipment includes medical imaging machines, used to aid in diagnosis; equipment includes infusion pumps, medical lasers, and LASIK surgical machines; medical monitors allow medical staff to measure a patient's medical state. Monitors may measure patient vital signs and other parameters including ECG, EEG, blood pressure, and dissolved gases in the blood; diagnostic medical equipment may also be used in the home for certain purposes, e.g. for the control of diabetes mellitus. A biomedical equipment technician (BMET) is a vital component of the healthcare delivery system. Employed primarily by hospitals, BMETs are the people responsible for maintaining a facility's medical equipment.


Structural elements

Any structure is essentially made up of only a small number of different types of elements: * Columns * Beams * Plates *
Arch An arch is a curved vertical structure spanning an open space underneath it. Arches may support the load above them, or they may perform a purely decorative role. As a decorative element, the arch dates back to the 4th millennium BC, but stru ...
es * Shells * Catenaries Many of these elements can be classified according to form (straight, plane / curve) and dimensionality (one-dimensional / two-dimensional):


Columns

Columns are elements that carry only axial force (compression) or both axial force and bending (which is technically called a beam-column but practically, just a column). The design of a column must check the axial capacity of the element and the buckling capacity. The
buckling In structural engineering, buckling is the sudden change in shape (Deformation (engineering), deformation) of a structural component under Structural load, load, such as the bowing of a column under Compression (physics), compression or the wrin ...
capacity is the capacity of the element to withstand the propensity to buckle. Its capacity depends upon its geometry, material, and the effective length of the column, which depends upon the restraint conditions at the top and bottom of the column. The effective length is K*l where l is the real length of the column and K is the factor dependent on the restraint conditions. The capacity of a column to carry axial load depends on the degree of bending it is subjected to, and vice versa. This is represented on an interaction chart and is a complex non-linear relationship.


Beams

A beam may be defined as an element in which one dimension is much greater than the other two and the applied loads are usually normal to the main axis of the element. Beams and columns are called line elements and are often represented by simple lines in structural modeling. * cantilevered (supported at one end only with a fixed connection) * simply supported (fixed against vertical translation at each end and horizontal translation at one end only, and able to rotate at the supports) * fixed (supported in all directions for translation and rotation at each end) * continuous (supported by three or more supports) * a combination of the above (ex. supported at one end and in the middle) Beams are elements that carry pure bending only. Bending causes one part of the section of a beam (divided along its length) to go into compression and the other part into tension. The compression part must be designed to resist buckling and crushing, while the tension part must be able to adequately resist the tension.


Trusses

A
truss A truss is an assembly of ''members'' such as Beam (structure), beams, connected by ''nodes'', that creates a rigid structure. In engineering, a truss is a structure that "consists of two-force members only, where the members are organized so ...
is a structure comprising members and connection points or nodes. When members are connected at nodes and forces are applied at nodes members can act in tension or compression. Members acting in compression are referred to as compression members or struts while members acting in tension are referred to as tension members or ties. Most trusses use gusset plates to connect intersecting elements. Gusset plates are relatively flexible and unable to transfer bending moments. The connection is usually arranged so that the lines of force in the members are coincident at the joint thus allowing the truss members to act in pure tension or compression. Trusses are usually used in large-span structures, where it would be uneconomical to use solid beams.


Plates

Plates carry bending in two directions. A concrete flat slab is an example of a plate. Plate behavior is based on
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a ''continuous medium'' (also called a ''continuum'') rather than as discrete particles. Continuum mec ...
. Due to the complexity involved they are most often analyzed using a finite element analysis. They can also be designed with yield line theory, where an assumed collapse mechanism is analyzed to give an upper bound on the collapse load. This technique is used in practice but because the method provides an upper-bound (i.e. an unsafe prediction of the collapse load) for poorly conceived collapse mechanisms, great care is needed to ensure that the assumed collapse mechanism is realistic.


Shells

Shells derive their strength from their form and carry forces in compression in two directions. A dome is an example of a shell. They can be designed by making a hanging-chain model, which will act as a catenary in pure tension and inverting the form to achieve pure compression.


Arches

Arches carry forces in compression in one direction only, which is why it is appropriate to build arches out of masonry. They are designed by ensuring that the line of thrust of the force remains within the depth of the arch. It is mainly used to increase the bountifulness of any structure.


Catenaries

Catenaries derive their strength from their form and carry transverse forces in pure tension by deflecting (just as a tightrope will sag when someone walks on it). They are almost always cable or fabric structures. A fabric structure acts as a catenary in two directions.


Materials

Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials support and resist loads. It also involves a knowledge of Corrosion engineering to avoid for example galvanic coupling of dissimilar materials. Common structural materials are: *
Iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
:
wrought iron Wrought iron is an iron alloy with a very low carbon content (less than 0.05%) in contrast to that of cast iron (2.1% to 4.5%), or 0.25 for low carbon "mild" steel. Wrought iron is manufactured by heating and melting high carbon cast iron in an ...
,
cast iron Cast iron is a class of iron–carbon alloys with a carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine the form in which its car ...
*
Concrete Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water), the most–widely used building material, and the most-manufactur ...
:
reinforced concrete Reinforced concrete, also called ferroconcrete or ferro-concrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ...
,
prestressed concrete Prestressed concrete is a form of concrete used in construction. It is substantially prestressed (Compression (physics), compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service. Post-t ...
*
Alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
:
steel Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
,
stainless steel Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
*
Masonry Masonry is the craft of building a structure with brick, stone, or similar material, including mortar plastering which are often laid in, bound, and pasted together by mortar (masonry), mortar. The term ''masonry'' can also refer to the buildin ...
*
Timber Lumber is wood that has been processed into uniform and useful sizes (dimensional lumber), including beams and planks or boards. Lumber is mainly used for construction framing, as well as finishing (floors, wall panels, window frames). ...
:
hardwood Hardwood is wood from Flowering plant, angiosperm trees. These are usually found in broad-leaved temperate and tropical forests. In temperate and boreal ecosystem, boreal latitudes they are mostly deciduous, but in tropics and subtropics mostl ...
, softwood *
Aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
*
Composite material A composite or composite material (also composition material) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a ...
s: plywood * Other structural materials: adobe,
bamboo Bamboos are a diverse group of mostly evergreen perennial plant, perennial flowering plants making up the subfamily (biology), subfamily Bambusoideae of the grass family Poaceae. Giant bamboos are the largest members of the grass family, in th ...
,
carbon fibre Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers ( Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon comp ...
, fiber reinforced plastic,
mudbrick Mudbrick or mud-brick, also known as unfired brick, is an air-dried brick, made of a mixture of mud (containing loam, clay, sand and water) mixed with a binding material such as rice husks or straw. Mudbricks are known from 9000 BCE. From ...
, roofing materials


See also

* Glossary of structural engineering * Aircraft structures *
Architects An architect is a person who plans, designs, and oversees the construction of buildings. To practice architecture means to provide services in connection with the design of buildings and the space within the site surrounding the buildings that h ...
* Architectural engineering * Building officials * Building services engineering *
Civil engineering Civil engineering is a regulation and licensure in engineering, professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads ...
* Construction engineering * Corrosion engineering * Earthquake engineering * Forensic engineering * Index of structural engineering articles * List of bridge disasters * List of structural engineers * List of structural engineering software *
Mechanical engineering Mechanical engineering is the study of physical machines and mechanism (engineering), mechanisms that may involve force and movement. It is an engineering branch that combines engineering physics and engineering mathematics, mathematics principl ...
* Nanostructure * Prestressed structure *
Structurae Structurae is an online database containing pictures and information about structural engineering, structural and civil engineering works, and their associated engineers, architects, and builders. Overview Structurae was founded in 1998 by Nico ...
*
Structural engineer Structural engineers analyze, design, plan, and research List of structural elements, structural components and structural systems to achieve design goals and ensure the safety and comfort of users or occupants. Their work takes account mainly of ...
* Structural engineering software * Structural fracture mechanics * Structural failure * Structural robustness *
Structural steel Structural steel is steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a profile of a specific cross section (geometry), cross section. Structural steel sha ...
* Structural testing


Notes


References

* Hibbeler, R. C. (2010). ''Structural Analysis''. Prentice-Hall. * Blank, Alan; McEvoy, Michael; Plank, Roger (1993). ''Architecture and Construction in Steel''. Taylor & Francis. . * Hewson, Nigel R. (2003). ''Prestressed Concrete Bridges: Design and Construction''. Thomas Telford. . * Heyman, Jacques (1999). ''The Science of Structural Engineering''. Imperial College Press. . * Hosford, William F. (2005). ''Mechanical Behavior of Materials''. Cambridge University Press. .


Further reading

* Blockley, David (2014). ''A Very Short Introduction to Structural Engineering''. Oxford University Press . * Bradley, Robert E.; Sandifer, Charles Edward (2007). ''Leonhard Euler: Life, Work, and Legacy''. Elsevier. . * Chapman, Allan. (2005). ''England's Leornardo: Robert Hooke and the Seventeenth Century's Scientific Revolution.'' CRC Press. . * Dugas, René (1988). ''A History of Mechanics''. Courier Dover Publications. . * Feld, Jacob; Carper, Kenneth L. (1997). ''Construction Failure''. John Wiley & Sons. . * Galilei, Galileo. (translators: Crew, Henry; de Salvio, Alfonso) (1954). ''Dialogues Concerning Two New Sciences''. Courier Dover Publications. * Kirby, Richard Shelton (1990). ''Engineering in History''. Courier Dover Publications. . * Heyman, Jacques (1998). ''Structural Analysis: A Historical Approach''. Cambridge University Press. . * Labrum, E.A. (1994). ''Civil Engineering Heritage''. Thomas Telford. . * Lewis, Peter R. (2004). ''Beautiful Bridge of the Silvery Tay''. Tempus. * Mir, Ali (2001). ''Art of the Skyscraper: the Genius of Fazlur Khan''. Rizzoli International Publications. . * Rozhanskaya, Mariam; Levinova, I. S. (1996). "Statics" in Morelon, Régis & Rashed, Roshdi (1996). ''Encyclopedia of the History of Arabic Science'', vol. 2–3, Routledge. * Whitbeck, Caroline (1998). ''Ethics in Engineering Practice and Research''. Cambridge University Press. . * Hoogenboom P.C.J. (1998). "Discrete Elements and Nonlinearity in Design of Structural Concrete Walls", Section 1.3 Historical Overview of Structural Concrete Modelling, . * Nedwell, P.J.; Swamy, R.N.(ed) (1994). ''Ferrocement:Proceedings of the Fifth International Symposium''. Taylor & Francis. .


External links


Structural Engineering Association – International

National Council of Structural Engineers Associations

Structural Engineering Institute
an institute of the
American Society of Civil Engineers The American Society of Civil Engineers (ASCE) is a tax-exempt professional body founded in 1852 to represent members of the civil engineering profession worldwide. Headquartered in Reston, Virginia, it is the oldest national engineering soci ...

Structurae database of structures

Structural Engineering Association – International

The EN Eurocodes are a series of 10 European Standards, EN 1990 – EN 1999, providing a common approach for the design of buildings and other civil engineering works and construction products
{{Authority control Civil engineering Engineering disciplines