HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
and
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
, a pseudo-Euclidean space is a finite-
dimensional In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
real -space together with a non- degenerate
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to ...
. Such a quadratic form can, given a suitable choice of basis , be applied to a vector , giving q(x) = \left(x_1^2 + \dots + x_k^2\right) - \left( x_^2 + \dots + x_n^2\right) which is called the ''scalar square'' of the vector . For
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
s, , implying that the quadratic form is positive-definite. When , is an
isotropic quadratic form In mathematics, a quadratic form over a field ''F'' is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if ''q'' is a quadratic form on a vector ...
, otherwise it is ''anisotropic''. Note that if , then , so that is a
null vector In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which . In the theory of real bilinear forms, definite quadratic forms an ...
. In a pseudo-Euclidean space with , unlike in a Euclidean space, there exist vectors with negative scalar square. As with the term ''Euclidean space'', the term ''pseudo-Euclidean space'' may be used to refer to an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
or a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
depending on the author, with the latter alternatively being referred to as a pseudo-Euclidean vector space (see
point–vector distinction In mathematics, an affine space is a geometric Structure (mathematics), structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping on ...
).


Geometry

The geometry of a pseudo-Euclidean space is consistent despite some properties of Euclidean space not applying, most notably that it is not a
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
as explained below. The
affine structure Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine comb ...
is unchanged, and thus also the concepts
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Art ...
, plane and, generally, of an
affine subspace In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
( flat), as well as
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between i ...
s.


Positive, zero, and negative scalar squares

A
null vector In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which . In the theory of real bilinear forms, definite quadratic forms an ...
is a vector for which the quadratic form is zero. Unlike in a Euclidean space, such a vector can be non-zero, in which case it is self-
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
. If the quadratic form is indefinite, a pseudo-Euclidean space has a linear cone of null vectors given by . When the pseudo-Euclidean space provides a model for
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
(see
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname *Ernst von Below (1863–1955), German World War I general *Fred Below ( ...
), the null cone is called the
light cone In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take thro ...
of the origin. The null cone separates two
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are su ...
s, respectively for which and . If , then the set of vectors for which is
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
. If , then it consists of two disjoint parts, one with and another with . Similar statements can be made for vectors for which if is replaced with .


Interval

The quadratic form corresponds to the square of a vector in the Euclidean case. To define the vector norm (and distance) in an invariant manner, one has to get
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose '' square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
s of scalar squares, which leads to possibly imaginary distances; see square root of negative numbers. But even for a
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colline ...
with positive scalar squares of all three sides (whose square roots are real and positive), the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
does not hold in general. Hence terms ''norm'' and ''distance'' are avoided in pseudo-Euclidean geometry, which may be replaced with ''scalar square'' and ''interval'' respectively. Though, for a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
whose
tangent vector In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are e ...
s all have scalar squares of the same sign, the
arc length ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
is defined. It has important applications: see
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
, for example.


Rotations and spheres

The rotations
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
of such space is
indefinite orthogonal group In mathematics, the indefinite orthogonal group, is the Lie group of all linear transformations of an ''n''-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature , where . It is also called the p ...
, also denoted as without a reference to particular quadratic form. Such "rotations" preserve the form and, hence, the scalar square of each vector including whether it is positive, zero, or negative. Whereas Euclidean space has a
unit sphere In mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ...
, pseudo-Euclidean space has the
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
s and . Such a hypersurface, called a
quasi-sphere In mathematics and theoretical physics, a quasi-sphere is a generalization of the hypersphere and the hyperplane to the context of a pseudo-Euclidean space. It may be described as the set of points for which the quadratic form for the space applie ...
, is preserved by the appropriate indefinite orthogonal group.


Symmetric bilinear form

The quadratic form gives rise to a
symmetric bilinear form In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinea ...
defined as follows: : \langle x, y\rangle = \tfrac12 (x + y) - q(x) - q(y)= \left(x_1 y_1 + \ldots + x_k y_k\right) - \left(x_y_ + \ldots + x_n y_n\right). The quadratic form can be expressed in terms of the bilinear form: . When , then and are
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
vectors of the pseudo-Euclidean space. This bilinear form is often referred to as the
scalar product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alge ...
, and sometimes as "inner product" or "dot product", but it does not define an
inner product space In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
and it does not have the properties of the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alg ...
of Euclidean vectors. If and are orthogonal and , then is
hyperbolic-orthogonal In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperb ...
to . The
standard basis In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors whose components are all zero, except one that equals 1. For example, in the ...
of the real -space is
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
. There are no ortho''normal'' bases in a pseudo-Euclidean space for which the bilinear form is indefinite, because it cannot be used to define a vector norm.


Subspaces and orthogonality

For a (positive-dimensional) subspace of a pseudo-Euclidean space, when the quadratic form is restricted to , following three cases are possible: # is either positive or negative definite. Then, is essentially Euclidean (up to the sign of ). # is indefinite, but non-degenerate. Then, is itself pseudo-Euclidean. It is possible only if ; if , which means than is a plane, then it is called a
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ' ...
. # is degenerate. One of most jarring properties (for a Euclidean intuition) of pseudo-Euclidean vectors and flats is their
orthogonality In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
. When two non-zero
Euclidean vector In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors ...
s are orthogonal, they are not
collinear In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned o ...
. The intersections of any Euclidean
linear subspace In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, l ...
with its
orthogonal complement In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace ''W'' of a vector space ''V'' equipped with a bilinear form ''B'' is the set ''W''⊥ of all vectors in ''V'' that are orthogonal to every ...
is the subspace. But the definition from the previous subsection immediately implies that any vector of zero scalar square is orthogonal to itself. Hence, the
isotropic line In the geometry of quadratic forms, an isotropic line or null line is a line for which the quadratic form applied to the displacement vector between any pair of its points is zero. An isotropic line occurs only with an isotropic quadratic form, an ...
generated by a
null vector In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which . In the theory of real bilinear forms, definite quadratic forms an ...
ν is a subset of its orthogonal complement . The formal definition of the orthogonal complement of a vector subspace in a pseudo-Euclidean space gives a perfectly well-defined result, which satisfies the equality due to the quadratic form's non-degeneracy. It is just the condition : or, equivalently, all space, which can be broken if the subspace contains a null direction. While subspaces form a lattice, as in any vector space, this operation is not an orthocomplementation, in contrast to
inner product space In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
s. For a subspace composed ''entirely'' of null vectors (which means that the scalar square , restricted to , equals to ), always holds: : or, equivalently, . Such a subspace can have up to
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
s. For a (positive) Euclidean -subspace its orthogonal complement is a -dimensional negative "Euclidean" subspace, and vice versa. Generally, for a -dimensional subspace consisting of positive and negative dimensions (see
Sylvester's law of inertia Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of basis. Namely, if ''A'' is the symmetric matrix that defines the quadra ...
for clarification), its orthogonal "complement" has positive and negative dimensions, while the rest ones are degenerate and form the intersection.


Parallelogram law and Pythagorean theorem

The
parallelogram law In mathematics, the simplest form of the parallelogram law (also called the parallelogram identity) belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the s ...
takes the form :q(x) + q(y) = \tfrac12(q(x + y) + q(x - y)). Using the square of the sum identity, for an arbitrary triangle one can express the scalar square of the third side from scalar squares of two sides and their bilinear form product: :q(x + y) = q(x) + q(y) + 2\langle x, y \rangle. This demonstrates that, for orthogonal vectors, a pseudo-Euclidean analog of the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
holds: :\langle x, y \rangle = 0 \Rightarrow q(x) + q(y) = q(x + y).


Angle

Generally, absolute value of the bilinear form on two vectors may be greater than , equal to it, or less. This causes similar problems with definition of
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
(see ) as appeared above for distances. If (only one positive term in ), then for vectors of positive scalar square: , \langle x, y\rangle, \ge \sqrt\,, which permits definition of the
hyperbolic angle In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic function ...
, an analog of angle between these vectors through inverse hyperbolic cosine: \operatorname\frac\,. It corresponds to the distance on a -dimensional
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
. This is known as
rapidity In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with d ...
in the context of theory of relativity discussed
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname *Ernst von Below (1863–1955), German World War I general *Fred Below ( ...
. Unlike Euclidean angle, it takes values from and equals to 0 for antiparallel vectors. There is no reasonable definition of the angle between a null vector and another vector (either null or non-null).


Algebra and tensor calculus

Like Euclidean spaces, every pseudo-Euclidean vector space generates a
Clifford algebra In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hyperco ...
. Unlike properties above, where replacement of to changed numbers but not
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the sign reversal of the quadratic form results in a distinct Clifford algebra, so for example and are not isomorphic. Just like over any vector space, there are pseudo-Euclidean
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensor ...
s. Like with a Euclidean structure, there are
raising and lowering indices In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Vectors, covectors and the metric Mat ...
operators but, unlike the case with Euclidean tensors, there is no bases where these operations do not change values of components. If there is a vector , the corresponding
covariant vector In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. In modern mathematical notation ...
is: : v_\alpha = q_ v^\beta\,, and with the standard-form : q_ = \begin I_ & 0 \\ 0 & -I_ \end the first components of are numerically the same as ones of , but the rest have opposite signs. The correspondence between contravariant and covariant tensors makes a
tensor calculus In mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime). Developed by Gregorio Ricci-Curbastro and his student Tullio Levi ...
on
pseudo-Riemannian manifold In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
s a generalization of one on Riemannian manifolds.


Examples

A very important pseudo-Euclidean space is
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
, which is the mathematical setting in which
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
is formulated. For Minkowski space, and so that : q(x) = x_1^2 + x_2^2 + x_3^2 - x_4^2, The geometry associated with this pseudo-metric was investigated by Poincaré.B. A. Rosenfeld (1988) ''A History of Non-Euclidean Geometry'', page 266, Studies in the history of mathematics and the physical sciences #12, Springer Its rotation group is the
Lorentz group In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicis ...
. The
Poincaré group The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our und ...
includes also
translations Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transl ...
and plays the same role as
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations ...
s of ordinary Euclidean spaces. Another pseudo-Euclidean space is the plane consisting of
split-complex number In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number wi ...
s, equipped with the quadratic form : \lVert z \rVert = z z^* = z^* z = x^2 - y^2. This is the simplest case of an indefinite pseudo-Euclidean space (, ) and the only one where the null cone dissects the space to ''four'' open sets. The group consists of so named
hyperbolic rotation In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation or shear mapping. For a fixed positive real number , t ...
s.


See also

*
Pseudo-Riemannian manifold In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
*
Hyperbolic equation In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n-1 derivatives. More precisely, the Cauchy problem can be ...
*
Hyperboloid model In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of ''n''-dimensional hyperbolic geometry in which points are represented by points on the forward sheet ''S''+ of a two-sheeted hyperbo ...
*
Paravector The name paravector is used for the sum of a scalar and a vector in any Clifford algebra, known as geometric algebra among physicists. This name was given by J. G. Maks in a doctoral dissertation at Technische Universiteit Delft, Netherlands, in ...


Footnotes


References

* *Werner Greub (1963) ''Linear Algebra'', 2nd edition, §12.4 Pseudo-Euclidean Spaces, pp. 237–49, Springer-Verlag. *
Walter Noll Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography ...
(1964) "Euclidean geometry and Minkowskian chronometry",
American Mathematical Monthly ''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an ...
71:129–44. * * *{{cite book , last = Shafarevich , first = I. R. , author-link = Igor Shafarevich , author2 = A. O. Remizov , title = Linear Algebra and Geometry , publisher =
Springer Springer or springers may refer to: Publishers * Springer Science+Business Media, aka Springer International Publishing, a worldwide publishing group founded in 1842 in Germany formerly known as Springer-Verlag. ** Springer Nature, a multinationa ...
, year = 2012 , url = https://www.springer.com/mathematics/algebra/book/978-3-642-30993-9 , isbn = 978-3-642-30993-9


External links

* D.D. Sokolov (originator)
Pseudo-Euclidean space
Encyclopedia of Mathematics The ''Encyclopedia of Mathematics'' (also ''EOM'' and formerly ''Encyclopaedia of Mathematics'') is a large reference work in mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structu ...
Lorentzian manifolds