TheInfoList

OR:

In physics, potential energy is the
energy In physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department ...
held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potential energy of an object, the elastic potential energy of an extended spring, and the electric potential energy of an
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force In physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior throu ...
in an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
. The unit for energy in the
International System of Units The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system The metric system is a system of measurement that ...
(SI) is the
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre The metre ( British spelling) ...
, which has the symbol J. The term ''potential energy'' was introduced by the 19th-century Scottish engineer and physicist William Rankine, although it has links to Greek philosopher
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ...
's concept of potentiality. Potential energy is associated with forces that act on a body in a way that the total work done by these forces on the body depends only on the initial and final positions of the body in space. These forces, that are called ''conservative forces'', can be represented at every point in space by vectors expressed as gradients of a certain scalar function called ''potential''. Since the work of potential forces acting on a body that moves from a start to an end position is determined only by these two positions, and does not depend on the trajectory of the body, there is a function known as ''potential'' that can be evaluated at the two positions to determine this work.

# Overview

There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the
baryon In particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation In physics Physics is the natural science that studies matter, its ...
charge is called nuclear potential energy; work of intermolecular forces is called intermolecular potential energy. Chemical potential energy, such as the energy stored in
fossil fuels A fossil fuel is a hydrocarbon In organic chemistry Organic chemistry is a subdiscipline within chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the e ...
, is the work of the Coulomb force during rearrangement of configurations of electrons and nuclei in atoms and molecules. Thermal energy usually has two components: the kinetic energy of random motions of particles and the potential energy of their configuration. Forces derivable from a potential are also called conservative forces. The work done by a conservative force is $W = -\Delta U$ where $\Delta U$ is the change in the potential energy associated with the force. The negative sign provides the convention that work done against a force field increases potential energy, while work done by the force field decreases potential energy. Common notations for potential energy are ''PE'', ''U'', ''V'', and ''Ep''. Potential energy is the energy by virtue of an object's position relative to other objects. Potential energy is often associated with restoring
force In physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department o ...
s such as a spring or the force of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a ...
. The action of stretching a spring or lifting a mass is performed by an external force that works against the force field of the potential. This work is stored in the force field, which is said to be stored as potential energy. If the external force is removed the force field acts on the body to perform the work as it moves the body back to the initial position, reducing the stretch of the spring or causing a body to fall. Consider a ball whose mass is and whose height is . The acceleration of free fall is approximately constant, so the weight force of the ball is constant. The product of force and displacement gives the work done, which is equal to the gravitational potential energy, thus $U_g = mgh$ The more formal definition is that potential energy is the energy difference between the energy of an object in a given position and its energy at a reference position.

# Work and potential energy

Potential energy is closely linked with forces. If the work done by a force on a body that moves from ''A'' to ''B'' does not depend on the path between these points (if the work is done by a conservative force), then the work of this force measured from ''A'' assigns a scalar value to every other point in space and defines a scalar potential field. In this case, the force can be defined as the negative of the vector gradient of the potential field. If the work for an applied force is independent of the path, then the work done by the force is evaluated from the start to the end of the trajectory of the point of application. This means that there is a function ''U''(x), called a "potential," that can be evaluated at the two points x''A'' and x''B'' to obtain the work over any trajectory between these two points. It is tradition to define this function with a negative sign so that positive work is a reduction in the potential, that is $W =\int_ \mathbf \cdot d\mathbf = U(\mathbf_A)-U(\mathbf_B)$ where ''C'' is the trajectory taken from A to B. Because the work done is independent of the path taken, then this expression is true for any trajectory, ''C'', from A to B. The function ''U''(x) is called the potential energy associated with the applied force. Examples of forces that have potential energies are gravity and spring forces.

## Derivable from a potential

In this section the relationship between work and potential energy is presented in more detail. The
line integral In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in m ...
that defines work along curve ''C'' takes a special form if the force F is related to a scalar field U'(x) so that $\mathbf= = \left ( \frac, \frac, \frac \right ).$ This means that the units of U' must be this case, work along the curve is given by $W = \int_ \mathbf \cdot d\mathbf = \int_ \nabla U'\cdot d\mathbf,$ which can be evaluated using the
gradient theorem The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem i ...
to obtain $W= U'(\mathbf_B) - U'(\mathbf_A).$ This shows that when forces are derivable from a scalar field, the work of those forces along a curve ''C'' is computed by evaluating the scalar field at the start point ''A'' and the end point ''B'' of the curve. This means the work integral does not depend on the path between ''A'' and ''B'' and is said to be independent of the path. Potential energy is traditionally defined as the negative of this scalar field so that work by the force field decreases potential energy, that is $W = U(\mathbf_A) - U(\mathbf_B).$ In this case, the application of the del operator to the work function yields, $= - = -\left ( \frac, \frac, \frac \right ) = \mathbf,$ and the force F is said to be "derivable from a potential." This also necessarily implies that F must be a conservative vector field. The potential ''U'' defines a force F at every point x in space, so the set of forces is called a force field.

## Computing potential energy

Given a force field F(x), evaluation of the work integral using the
gradient theorem The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem i ...
can be used to find the scalar function associated with potential energy. This is done by introducing a parameterized curve from to , and computing, $\begin \int_ \nabla\Phi(\mathbf) \cdot d\mathbf &=\int_a^b \nabla\Phi(\mathbf(t)) \cdot \mathbf'(t) dt, \\ &=\int_a^b \frac\Phi(\mathbf(t))dt =\Phi(\mathbf(b))-\Phi(\mathbf(a)) =\Phi\left(\mathbf_B\right)-\Phi\left(\mathbf_A\right). \end$ For the force field F, let , then the
gradient theorem The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem i ...
yields, $\begin \int_ \mathbf \cdot d\mathbf &=\int_a^b \mathbf \cdot \mathbf \, dt, \\ &= -\int_a^b \frac U(\mathbf(t)) \, dt =U(\mathbf_A)- U(\mathbf_B). \end$ The power applied to a body by a force field is obtained from the gradient of the work, or potential, in the direction of the velocity v of the point of application, that is $P(t) = - \cdot \mathbf = \mathbf\cdot\mathbf.$ Examples of work that can be computed from potential functions are gravity and spring forces.

# Potential energy for near Earth gravity

For small height changes, gravitational potential energy can be computed using $U_g = mgh,$ where ''m'' is the mass in kg, ''g'' is the local gravitational field (9.8 metres per second squared on earth), ''h'' is the height above a reference level in metres, and ''U'' is the energy in joules. In classical physics, gravity exerts a constant downward force on the center of mass of a body moving near the surface of the Earth. The work of gravity on a body moving along a trajectory , such as the track of a roller coaster is calculated using its velocity, , to obtain $W = \int_^ \boldsymbol \cdot \boldsymbol \, dt = \int_^ F_z v_z \, dt = F_z\Delta z.$ where the integral of the vertical component of velocity is the vertical distance. The work of gravity depends only on the vertical movement of the curve .

# Potential energy for a linear spring

A horizontal spring exerts a force that is proportional to its deformation in the axial or ''x'' direction. The work of this spring on a body moving along the space curve , is calculated using its velocity, , to obtain $W = \int_0^t\mathbf\cdot\mathbf\,dt = -\int_0^t kx v_x \, dt =-\int_0^t k x \fracdt = \int_^ k x \, dx = \frac kx^2$ For convenience, consider contact with the spring occurs at , then the integral of the product of the distance ''x'' and the ''x''-velocity, ''xvx'', is ''x''2/2. The function $U(x) = \frackx^2,$ is called the potential energy of a linear spring. Elastic potential energy is the potential energy of an elastic object (for example a bow or a catapult) that is deformed under tension or compression (or stressed in formal terminology). It arises as a consequence of a force that tries to restore the object to its original shape, which is most often the
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge Electric charge is the physical property of matter that causes charged matter to experience a force In physics Physics ...
between the atoms and molecules that constitute the object. If the stretch is released, the energy is transformed into
kinetic energy In physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department o ...
.

# Potential energy for gravitational forces between two bodies

The gravitational potential function, also known as gravitational potential energy, is: $U=-\frac,$ The negative sign follows the convention that work is gained from a loss of potential energy.

## Derivation

The gravitational force between two bodies of mass ''M'' and ''m'' separated by a distance ''r'' is given by Newton's law $\mathbf=-\frac\mathbf,$ where $\mathbf$ is a vector of length 1 pointing from ''M'' to ''m'' and ''G'' is the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
. Let the mass ''m'' move at the velocity then the work of gravity on this mass as it moves from position to is given by $W = -\int^_ \frac \mathbf\cdot d\mathbf = -\int^_ \frac \mathbf\cdot\mathbf \, dt.$ The position and velocity of the mass ''m'' are given by $\mathbf = r\mathbf_r, \qquad\mathbf=\dot\mathbf_r + r\dot\mathbf_t,$ where e''r'' and e''t'' are the radial and tangential unit vectors directed relative to the vector from ''M'' to ''m''. Use this to simplify the formula for work of gravity to, $W = -\int^_ \frac (r\mathbf_r)\cdot(\dot\mathbf_r + r\dot\mathbf_t)\,dt = -\int^_\fracr\dotdt = \frac-\frac.$ This calculation uses the fact that $\fracr^ = -r^\dot = -\frac.$

# Potential energy for electrostatic forces between two bodies

The electrostatic force exerted by a charge ''Q'' on another charge ''q'' separated by a distance ''r'' is given by
Coulomb's Law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the re ...
$\mathbf=\frac\frac\mathbf,$ where $\mathbf$ is a vector of length 1 pointing from ''Q'' to ''q'' and ''ε''0 is the vacuum permittivity. This may also be written using the Coulomb constant . The work ''W'' required to move ''q'' from ''A'' to any point ''B'' in the electrostatic force field is given by the potential function $U(r) = \frac\frac.$

# Reference level

The potential energy is a function of the state a system is in, and is defined relative to that for a particular state. This reference state is not always a real state; it may also be a limit, such as with the distances between all bodies tending to infinity, provided that the energy involved in tending to that limit is finite, such as in the case of inverse-square law forces. Any arbitrary reference state could be used; therefore it can be chosen based on convenience. Typically the potential energy of a system depends on the ''relative'' positions of its components only, so the reference state can also be expressed in terms of relative positions.

# Gravitational potential energy

Gravitational energy is the potential energy associated with
gravitational force In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a ...
, as work is required to elevate objects against Earth's gravity. The potential energy due to elevated positions is called gravitational potential energy, and is evidenced by water in an elevated reservoir or kept behind a dam. If an object falls from one point to another point inside a gravitational field, the force of gravity will do positive work on the object, and the gravitational potential energy will decrease by the same amount. Consider a book placed on top of a table. As the book is raised from the floor to the table, some external force works against the gravitational force. If the book falls back to the floor, the "falling" energy the book receives is provided by the gravitational force. Thus, if the book falls off the table, this potential energy goes to accelerate the mass of the book and is converted into
kinetic energy In physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department o ...
. When the book hits the floor this kinetic energy is converted into heat, deformation, and sound by the impact. The factors that affect an object's gravitational potential energy are its height relative to some reference point, its mass, and the strength of the gravitational field it is in. Thus, a book lying on a table has less gravitational potential energy than the same book on top of a taller cupboard and less gravitational potential energy than a heavier book lying on the same table. An object at a certain height above the Moon's surface has less gravitational potential energy than at the same height above the Earth's surface because the Moon's gravity is weaker. "Height" in the common sense of the term cannot be used for gravitational potential energy calculations when gravity is not assumed to be a constant. The following sections provide more detail.

## Local approximation

The strength of a gravitational field varies with location. However, when the change of distance is small in relation to the distances from the center of the source of the gravitational field, this variation in field strength is negligible and we can assume that the force of gravity on a particular object is constant. Near the surface of the Earth, for example, we assume that the acceleration due to gravity is a constant ("
standard gravity The standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by or , is the nominal gravitational acceleration of an object in a vacuum near the surface of the Eart ...
"). In this case, a simple expression for gravitational potential energy can be derived using the equation for work, and the equation $W_F = -\Delta U_F.$ The amount of gravitational potential energy held by an elevated object is equal to the work done against gravity in lifting it. The work done equals the force required to move it upward multiplied with the vertical distance it is moved (remember ). The upward force required while moving at a constant velocity is equal to the weight, , of an object, so the work done in lifting it through a height is the product . Thus, when accounting only for
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom Every atom is composed of a nucleus and one or more electrons boun ...
,
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a ...
, and
altitude Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
, the equation is: $U = mgh$ where is the potential energy of the object relative to its being on the Earth's surface, is the mass of the object, is the acceleration due to gravity, and ''h'' is the altitude of the object. If is expressed in
kilogram The kilogram (also kilogramme) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquiall ...
s, in m/s2 and in
metre The metre ( British spelling) or meter ( American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its ...
s then will be calculated in
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre The metre ( British spelling) ...
s. Hence, the potential difference is $\Delta U = mg \Delta h.$

## General formula

However, over large variations in distance, the approximation that is constant is no longer valid, and we have to use
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mat ...
and the general mathematical definition of work to determine gravitational potential energy. For the computation of the potential energy, we can integrate the gravitational force, whose magnitude is given by Newton's law of gravitation, with respect to the distance between the two bodies. Using that definition, the gravitational potential energy of a system of masses and at a distance using
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
is $U = -G \frac + K,$ where is an arbitrary constant dependent on the choice of datum from which potential is measured. Choosing the convention that (i.e. in relation to a point at infinity) makes calculations simpler, albeit at the cost of making negative; for why this is physically reasonable, see below. Given this formula for , the total potential energy of a system of bodies is found by summing, for all $\frac$ pairs of two bodies, the potential energy of the system of those two bodies. Considering the system of bodies as the combined set of small particles the bodies consist of, and applying the previous on the particle level we get the negative gravitational binding energy. This potential energy is more strongly negative than the total potential energy of the system of bodies as such since it also includes the negative gravitational binding energy of each body. The potential energy of the system of bodies as such is the negative of the energy needed to separate the bodies from each other to infinity, while the gravitational binding energy is the energy needed to separate all particles from each other to infinity. $U = - m \left(G \frac+ G \frac\right)$ therefore, $U = - m \sum G \frac ,$

## Negative gravitational energy

As with all potential energies, only differences in gravitational potential energy matter for most physical purposes, and the choice of zero point is arbitrary. Given that there is no reasonable criterion for preferring one particular finite ''r'' over another, there seem to be only two reasonable choices for the distance at which becomes zero: $r = 0$ and $r = \infty$. The choice of $U = 0$ at infinity may seem peculiar, and the consequence that gravitational energy is always negative may seem counterintuitive, but this choice allows gravitational potential energy values to be finite, albeit negative. The singularity at $r = 0$ in the formula for gravitational potential energy means that the only other apparently reasonable alternative choice of convention, with $U = 0$ for $r = 0$, would result in potential energy being positive, but infinitely large for all nonzero values of , and would make calculations involving sums or differences of potential energies beyond what is possible with the
real number In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in ...
system. Since physicists abhor infinities in their calculations, and is always non-zero in practice, the choice of $U = 0$ at infinity is by far the more preferable choice, even if the idea of negative energy in a
gravity well The Hill sphere of an astronomical body is the region in which it dominates the attraction of satellites. To be retained by a planet A planet is a large, rounded astronomical body that is neither a star A star is an astronomica ...
appears to be peculiar at first. The negative value for gravitational energy also has deeper implications that make it seem more reasonable in cosmological calculations where the total energy of the universe can meaningfully be considered; see inflation theory for more on this.

## Uses

Gravitational potential energy has a number of practical uses, notably the generation of pumped-storage hydroelectricity. For example, in Dinorwig, Wales, there are two lakes, one at a higher elevation than the other. At times when surplus electricity is not required (and so is comparatively cheap), water is pumped up to the higher lake, thus converting the electrical energy (running the pump) to gravitational potential energy. At times of peak demand for electricity, the water flows back down through electrical generator turbines, converting the potential energy into kinetic energy and then back into electricity. The process is not completely efficient and some of the original energy from the surplus electricity is in fact lost to friction.Jacob, Thierr
Pumped storage in Switzerland – an outlook beyond 2000
''Stucky''. Accessed: 13 February 2012.
Levine, Jonah G
Pumped Hydroelectric Energy Storage and Spatial Diversity of Wind Resources as Methods of Improving Utilization of Renewable Energy Sources
page 6, '' University of Colorado'', December 2007. Accessed: 12 February 2012.
Yang, Chi-Jen
Pumped Hydroelectric Storage
''
Duke University Duke University is a private research university in Durham, North Carolina. Founded by Methodists and Quakers Quakers are people who belong to a historically Protestant Christian set of denominations known formally as the Religio ...
''. Accessed: 12 February 2012.
Energy Storage
'' Hawaiian Electric Company''. Accessed: 13 February 2012.
Gravitational potential energy is also used to power clocks in which falling weights operate the mechanism. It's also used by
counterweight A counterweight is a weight that, by applying an opposite force, provides balance and stability of a mechanical system. The purpose of a counterweight is to make lifting the load faster and more efficient, which saves energy In physics ...
s for lifting up an
elevator An elevator or lift is a cable-assisted, hydraulic cylinder A hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has ...
, crane, or
sash window A sash window or hung sash window is made of one or more movable panels, or "sashes". The individual sashes are traditionally paned windows, but can now contain an individual sheet (or sheets, in the case of double glazing) of glass. History ...
. Roller coasters are an entertaining way to utilize potential energy – chains are used to move a car up an incline (building up gravitational potential energy), to then have that energy converted into kinetic energy as it falls. Another practical use is utilizing gravitational potential energy to descend (perhaps coast) downhill in transportation such as the descent of an automobile, truck, railroad train, bicycle, airplane, or fluid in a pipeline. In some cases the
kinetic energy In physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department o ...
obtained from the potential energy of descent may be used to start ascending the next grade such as what happens when a road is undulating and has frequent dips. The commercialization of stored energy (in the form of rail cars raised to higher elevations) that is then converted to electrical energy when needed by an electrical grid, is being undertaken in the United States in a system called Advanced Rail Energy Storage (ARES).Packing Some Power: Energy Technology: Better ways of storing energy are needed if electricity systems are to become cleaner and more efficient
''
The Economist ''The Economist'' is a British weekly newspaper printed in demitab format and published digitally. It focuses on current affairs, international business, politics, technology, and culture. Based in London, the newspaper is owned by The Eco ...
'', 3 March 2012
Downing, Louise
Ski Lifts Help Open \$25 Billion Market for Storing Power
Bloomberg News Bloomberg News (originally Bloomberg Business News) is an international news agency headquartered in New York City New York, often called New York City or NYC, is the most populous city in the United States. Wit ...
online, 6 September 2012

# Chemical potential energy

Chemical potential energy is a form of potential energy related to the structural arrangement of atoms or molecules. This arrangement may be the result of
chemical bond A chemical bond is a lasting attraction between atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common varie ...
s within a molecule or otherwise. Chemical energy of a chemical substance can be transformed to other forms of energy by a
chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electron The electron ( or ) ...
. As an example, when a fuel is burned the chemical energy is converted to heat, same is the case with digestion of food metabolized in a biological organism. Green plants transform
solar energy Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy (including solar water heating), and solar architecture. It is an ...
to chemical energy through the process known as
photosynthesis Photosynthesis is a process used by plant Plants are predominantly photosynthetic eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. Th ...
, and electrical energy can be converted to chemical energy through
electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an out ...
reactions. The similar term chemical potential is used to indicate the potential of a substance to undergo a change of configuration, be it in the form of a chemical reaction, spatial transport, particle exchange with a reservoir, etc.

# Electric potential energy

An object can have potential energy by virtue of its
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force In physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior throu ...
and several forces related to their presence. There are two main types of this kind of potential energy: electrostatic potential energy, electrodynamic potential energy (also sometimes called magnetic potential energy).

## Electrostatic potential energy

Electrostatic potential energy between two bodies in space is obtained from the force exerted by a charge ''Q'' on another charge ''q'' which is given by $\mathbf_ = -\frac \frac \mathbf,$ where $\mathbf$ is a vector of length 1 pointing from ''Q'' to ''q'' and ''ε''0 is the vacuum permittivity. This may also be written using the Coulomb constant . If the electric charge of an object can be assumed to be at rest, then it has potential energy due to its position relative to other charged objects. The electrostatic potential energy is the energy of an electrically charged particle (at rest) in an electric field. It is defined as the work that must be done to move it from an infinite distance away to its present location, adjusted for non-electrical forces on the object. This energy will generally be non-zero if there is another electrically charged object nearby. The work ''W'' required to move ''q'' from ''A'' to any point ''B'' in the electrostatic force field is given by $\Delta U_()=-\int_^ \mathbf \cdot d\mathbf$ typically given in J for Joules. A related quantity called ''
electric potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge Electric charge is the physical property o ...
'' (commonly denoted with a ''V'' for voltage) is equal to the electric potential energy per unit charge.

## Magnetic potential energy

The energy of a
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable prop ...
$\boldsymbol$ in an externally produced magnetic B-field has potential energy $U=-\boldsymbol\cdot\mathbf.$ The
magnetization In classical electromagnetism, magnetization is the vector field that expresses the density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ' ...
in a field is $U = -\frac\int \mathbf\cdot\mathbf \, dV,$ where the integral can be over all space or, equivalently, where is nonzero. Magnetic potential energy is the form of energy related not only to the distance between magnetic materials, but also to the orientation, or alignment, of those materials within the field. For example, the needle of a compass has the lowest magnetic potential energy when it is aligned with the north and south poles of the Earth's magnetic field. If the needle is moved by an outside force, torque is exerted on the magnetic dipole of the needle by the Earth's magnetic field, causing it to move back into alignment. The magnetic potential energy of the needle is highest when its field is in the same direction as the Earth's magnetic field. Two magnets will have potential energy in relation to each other and the distance between them, but this also depends on their orientation. If the opposite poles are held apart, the potential energy will be higher the further they are apart and lower the closer they are. Conversely, like poles will have the highest potential energy when forced together, and the lowest when they spring apart.

# Nuclear potential energy

Nuclear potential energy is the potential energy of the
particles In the physical sciences Physical science is a branch of natural science that studies non-living systems, in contrast to life science Life is a quality that distinguishes matter that has biological processes, such as signaling ...
inside an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutro ...
. The nuclear particles are bound together by the strong nuclear force. Weak nuclear forces provide the potential energy for certain kinds of radioactive decay, such as
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. F ...
. Nuclear particles like protons and neutrons are not destroyed in fission and fusion processes, but collections of them can have less mass than if they were individually free, in which case this mass difference can be liberated as heat and radiation in nuclear reactions (the heat and radiation have the missing mass, but it often escapes from the system, where it is not measured). The energy from the
Sun The Sun is the star A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth Earth is the third planet from the Sun and the only astronomical ...
is an example of this form of energy conversion. In the Sun, the process of hydrogen fusion converts about 4 million tonnes of solar matter per second into electromagnetic energy, which is radiated into space.

# Forces and potential energy

Potential energy is closely linked with forces. If the work done by a force on a body that moves from ''A'' to ''B'' does not depend on the path between these points, then the work of this force measured from ''A'' assigns a scalar value to every other point in space and defines a scalar potential field. In this case, the force can be defined as the negative of the vector gradient of the potential field. For example, gravity is a conservative force. The associated potential is the gravitational potential, often denoted by $\phi$ or $V$, corresponding to the energy per unit mass as a function of position. The gravitational potential energy of two particles of mass ''M'' and ''m'' separated by a distance ''r'' is $U = -\frac,$ The gravitational potential ( specific energy) of the two bodies is $\phi = -\left( \frac + \frac \right)= -\frac = -\frac = \frac.$ where $\mu$ is the reduced mass. The work done against gravity by moving an infinitesimal mass from point A with $U = a$ to point B with $U = b$ is $\left(b - a\right)$ and the work done going back the other way is $\left(a - b\right)$ so that the total work done in moving from A to B and returning to A is $U_ = (b - a) + (a - b) = 0.$ If the potential is redefined at A to be $a + c$ and the potential at B to be $b + c$, where $c$ is a constant (i.e. $c$ can be any number, positive or negative, but it must be the same at A as it is at B) then the work done going from A to B is $U_ = (b + c) - (a + c) = b - a$ as before. In practical terms, this means that one can set the zero of $U$ and $\phi$ anywhere one likes. One may set it to be zero at the surface of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
, or may find it more convenient to set zero at infinity (as in the expressions given earlier in this section). A conservative force can be expressed in the language of
differential geometry Differential geometry is a mathematical discipline that studies the geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics Mathematics is an area of knowledge that includes the topics of numbers, form ...
as a closed form. As
Euclidean space Euclidean space is the fundamental space of geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structure ...
is contractible, its de Rham cohomology vanishes, so every closed form is also an exact form, and can be expressed as the gradient of a scalar field. This gives a mathematical justification of the fact that all conservative forces are gradients of a potential field.

# References

* *

What is potential energy?
{{DEFAULTSORT:Potential Energy Forms of energy Gravity