HOME

TheInfoList



OR:

Vertebrate visual opsins are a subclass of
ciliary opsin Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become Retinylidene proteins, but are usually still called opsins regardless. Most pro ...
s and mediate vision in vertebrates. They include the opsins in human rod and
cone cell Cone cells, or cones, are photoreceptor cells in the retinas of vertebrate eyes including the human eye. They respond differently to light of different wavelengths, and the combination of their responses is responsible for color vision. Cone ...
s. They are often abbreviated to ''opsin'', as they were the first
opsin Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become Retinylidene proteins, but are usually still called opsins regardless. Most ...
s discovered and are still the most widely studied opsins.


Opsins

Opsin refers strictly to the apoprotein (without bound retinal). When an opsin binds retinal to form a holoprotein, it is referred to as
Retinylidene protein Retinylidene proteins, are proteins that use retinal as a chromophore for light reception. They are the molecular basis for a variety of light-sensing systems from phototaxis in flagellates to eyesight in animals. Retinylidene proteins include ...
. However, the distinction is often ignored, and opsin may refer loosely to both (regardless of whether retinal is bound). Opsins are G-protein-coupled receptors (GPCRs) and must bind retinal ⁠— typically 11-''cis''-retinal ⁠— in order to be photosensitive, since the retinal acts as the
chromophore A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the mo ...
. When the
Retinylidene protein Retinylidene proteins, are proteins that use retinal as a chromophore for light reception. They are the molecular basis for a variety of light-sensing systems from phototaxis in flagellates to eyesight in animals. Retinylidene proteins include ...
absorbs a photon, the retinal isomerizes and is released by the opsin. The process that follows the isomerization and renewal of retinal is known as the visual cycle. Free 11-''cis''-retinal is photosensitive and carries its own
spectral sensitivity Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characterist ...
of 380nm. However, in order to trigger the
phototransduction cascade Visual phototransduction is the sensory transduction process of the visual system by which light is detected to yield nerve impulses in the rod cells and cone cells in the retina of the eye in humans and other vertebrates. It relies on the visual c ...
, the process that underlies the visual signal, the retinal must be bound to an opsin when it is isomerized. The retinylidene protein has a spectral sensitivity that differs from that of free retinal and depends on the opsin sequence. While opsins can only bind retinal, there are two forms of retinal that can act as the chromophore for vertebrate visual opsins: * Retinal 1 ( 11-''cis''-Retinal) - the common form present in most opsins * Retinal 2 ( 11-''cis''-3,4-Dehydroretinal) - a rarer form that is relatively red-shifted compared to retinal 1. Animals living on land and marine fish form their visual pigments exclusively with retinal 1. However, many freshwater fish and amphibians can also form visual pigments with retinal 2, depending on the activation of the enzyme Retinal-3,4-Dehydrogenase. Many of these species can switch between these chromophores during their life cycle, to adapt to a changing habitat.George Wald (1939): ''The Porphyropsin Visual System.'' In: '' The Journal of General Physiology.'' Bd. 22, S. 775–794
PDF
/ref>Andrew T. C. Tsin & Janie M. Flores (1985): ''The in vivo Regeneration of Goldfish Rhodopsin and Porphyropsin.'' In: ''J. Exp. Biol.'' Bd. 122, S. 269–275. PMID 372307
PDF
/ref>


Function

Isomerization of 11-''cis''-retinal into all-''trans''-retinal by
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
induces a conformational change in the protein that activates the phototransduction pathway.


Subclasses

There are two classes of vertebrate visual opsin, differentiated by whether they are expressed in rod or cone photoreceptors.


Cone opsins

Opsins expressed in cone cells are called cone opsins. The cone opsins are called
photopsin Vertebrate visual opsins are a subclass of ciliary opsins and mediate vision in vertebrates. They include the opsins in human rod and cone cells. They are often abbreviated to ''opsin'', as they were the first opsins discovered and are still th ...
s when unbound to retinal and iodopsins when bound to retinal. Cone opsins mediate photopic vision (daylight). Cone opsins are further subdivided according to the
spectral sensitivity Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characterist ...
of their iodopsin, namely the wavelength at which the highest light absorption is observed (''λ''max).


Rod opsins

Opsins expressed in rod cells are called rod opsins. The rod opsins are called scotopsins when unbound to retinal and
rhodopsin Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene and a G-protein-coupled receptor (GPCR). It is the opsin of the rod cells in the retina and a light-sensitive receptor protein that triggers visual phototransductio ...
s or porphyropsins when bound to retinal (1 and 2, respectively). Rod opsins mediate scotopic vision (dim light). Compared to cone opsins, the spectral sensitivity of rhodopsin is quite stable, not deviating far from 500 nm in any vertebrate.


Evolution

Extant vertebrates typically have four cone opsin classes (LWS, SWS1, SWS2, and Rh2) as well as one rod opsin class (rhodopsin, Rh1), all of which were inherited from early vertebrate ancestors. These five classes of vertebrate visual opsins emerged through a series of gene duplications beginning with LWS and ending with Rh1, according to the
cladogram A cladogram (from Greek ''clados'' "branch" and ''gramma'' "character") is a diagram used in cladistics to show relations among organisms. A cladogram is not, however, an evolutionary tree because it does not show how ancestors are related to ...
to the right. Each class has since evolved into numerous variants. Evolutionary relationships, deduced using the
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
sequence of the opsins, are frequently used to categorize cone opsins into their respective class. Mammals lost Rh2 and SWS2 classes during the nocturnal bottleneck. Primate ancestors later developed two LWS opsins (LWS and MWS), leaving humans with 4 visual opsins in 3 classes.


History

George Wald George Wald (November 18, 1906 – April 12, 1997) was an American scientist who studied pigments in the retina. He won a share of the 1967 Nobel Prize in Physiology or Medicine with Haldan Keffer Hartline and Ragnar Granit. In 1970, Wald pr ...
received the 1967
Nobel Prize in Physiology or Medicine The Nobel Prize in Physiology or Medicine is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, accordi ...
for his experiments in the 1950s that showed the difference in absorbance by these photopsins (see image).


See also

* Color blindness *
Melanopsin Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene ''Opn4''. In the mammalian retina, there are two additional categories of opsins, both involved in the f ...
*
Retinylidene protein Retinylidene proteins, are proteins that use retinal as a chromophore for light reception. They are the molecular basis for a variety of light-sensing systems from phototaxis in flagellates to eyesight in animals. Retinylidene proteins include ...
*
Rhodopsin Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene and a G-protein-coupled receptor (GPCR). It is the opsin of the rod cells in the retina and a light-sensitive receptor protein that triggers visual phototransductio ...
* Visual cycle *
Visual phototransduction Visual phototransduction is the sensory transduction process of the visual system by which light is detected to yield nerve impulses in the rod cells and cone cells in the retina of the eye in humans and other vertebrates. It relies on the visual ...


References

{{G protein-coupled receptors G protein-coupled receptors Vision