HOME

TheInfoList



OR:

A tropical year or solar year (or tropical period) is the
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
that the Sun takes to return to the same position in the sky of a
celestial body An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
such as the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
, completing a full cycle of
season A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun. In temperate and ...
s; for example, the time from vernal equinox to vernal equinox, or from
summer solstice The summer solstice, also called the estival solstice or midsummer, occurs when one of Earth's poles has its maximum tilt toward the Sun. It happens twice yearly, once in each hemisphere (Northern and Southern). For that hemisphere, the summer ...
to summer solstice. It is the type of
year A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the h ...
used by tropical solar calendars. The solar year is one type of
astronomical year A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hour ...
and particular
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting pla ...
. Another type is the
sidereal year A sidereal year (, ; ), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars. Hence, for Earth, it is also the time taken for the Sun to return to t ...
(or sidereal orbital period), which is the time it takes Earth to complete one full orbit around the Sun as measured with respect to the
fixed stars In astronomy, fixed stars ( la, stellae fixae) is a term to name the full set of glowing points, astronomical objects actually and mainly stars, that appear not to move relative to one another against the darkness of the night sky in the backgro ...
, resulting in a duration of 20
minute The minute is a unit of time usually equal to (the first sexagesimal fraction) of an hour, or 60 seconds. In the UTC time standard, a minute on rare occasions has 61 seconds, a consequence of leap seconds (there is a provision to insert a neg ...
s longer than the tropical year, because of the
precession of the equinoxes In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In partic ...
. Since antiquity, astronomers have progressively refined the definition of the tropical year. The entry for "year, tropical" in the '' Astronomical Almanac Online Glossary'' states: An equivalent, more descriptive, definition is "The natural basis for computing passing tropical years is the mean longitude of the Sun reckoned from the precessionally moving equinox (the dynamical equinox or equinox of date). Whenever the longitude reaches a multiple of 360 degrees the mean Sun crosses the vernal equinox and a new tropical year begins". The mean tropical year in 2000 was 365.24219 ephemeris days, each ephemeris day lasting 86,400 SI seconds. This is 365.24217 mean solar days. For this reason, the calendar year is an approximation of the solar year: the
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years d ...
(with its rules for catch-up leap days) is designed so as to resynchronise the calendar year with the solar year at regular intervals.


History


Origin

The word "tropical" comes from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
''tropikos'' meaning "turn". Thus, the tropics of
Cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
and Capricorn mark the extreme north and south
latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north ...
s where the Sun can appear directly overhead, and where it appears to "turn" in its annual seasonal motion. Because of this connection between the tropics and the seasonal cycle of the apparent position of the Sun, the word "tropical" also lent its name to the "tropical year". The early Chinese, Hindus, Greeks, and others made approximate measures of the tropical year.


Early value, precession discovery

In the 2nd century BC
Hipparchus Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the e ...
measured the time required for the Sun to travel from an
equinox A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and se ...
to the same equinox again. He reckoned the length of the year to be 1/300 of a day less than 365.25 days (365 days, 5 hours, 55 minutes, 12 seconds, or 365.24667 days). Hipparchus used this method because he was better able to detect the time of the equinoxes, compared to that of the solstices. Hipparchus also discovered that the equinoctial points moved along the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
(plane of the Earth's orbit, or what Hipparchus would have thought of as the plane of the Sun's orbit about the Earth) in a direction opposite that of the movement of the Sun, a phenomenon that came to be named "precession of the equinoxes". He reckoned the value as 1° per century, a value that was not improved upon until about 1000 years later, by Islamic astronomers. Since this discovery a distinction has been made between the tropical year and the sidereal year.


Middle Ages and the Renaissance

During the Middle Ages and Renaissance a number of progressively better tables were published that allowed computation of the positions of the Sun,
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
and
planets A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a youn ...
relative to the fixed stars. An important application of these tables was the reform of the calendar. The Alfonsine Tables, published in 1252, were based on the theories of
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importanc ...
and were revised and updated after the original publication. The length of the tropical year was given as 365 solar days 5 hours 49 minutes 16 seconds (≈ 365.24255 days). This length was used in devising the
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years d ...
of 1582. In the 16th century
Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic canon, who formulat ...
put forward a heliocentric cosmology. Erasmus Reinhold used Copernicus' theory to compute the
Prutenic Tables The ''Prutenic Tables'' ( la, Tabulae prutenicae from ''Prutenia'' meaning "Prussia", german: Prutenische oder Preußische Tafeln), were an ephemeris (astronomical tables) by the astronomer Erasmus Reinhold published in 1551 (reprinted in 1562, 1 ...
in 1551, and gave a tropical year length of 365 solar days, 5 hours, 55 minutes, 58 seconds (365.24720 days), based on the length of a
sidereal year A sidereal year (, ; ), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars. Hence, for Earth, it is also the time taken for the Sun to return to t ...
and the presumed rate of precession. This was actually less accurate than the earlier value of the Alfonsine Tables. Major advances in the 17th century were made by
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
and
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
. In 1609 and 1619 Kepler published his three laws of planetary motion. In 1627, Kepler used the observations of
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
and Waltherus to produce the most accurate tables up to that time, the
Rudolphine Tables The ''Rudolphine Tables'' ( la, Tabulae Rudolphinae) consist of a star catalogue and planetary tables published by Johannes Kepler in 1627, using observational data collected by Tycho Brahe (1546–1601). The tables are named in memory of Rudolf ...
. He evaluated the mean tropical year as 365 solar days, 5 hours, 48 minutes, 45 seconds (365.24219 days). Newton's three laws of dynamics and theory of gravity were published in his ''
Philosophiæ Naturalis Principia Mathematica (English: ''Mathematical Principles of Natural Philosophy'') often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Latin and ...
'' in 1687. Newton's theoretical and mathematical advances influenced tables by
Edmond Halley Edmond (or Edmund) Halley (; – ) was an English astronomer, mathematician and physicist. He was the second Astronomer Royal in Britain, succeeding John Flamsteed in 1720. From an observatory he constructed on Saint Helena in 1676–77, H ...
published in 1693 and 1749 and provided the underpinnings of all solar system models until
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's theory of
General relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
in the 20th century.


18th and 19th century

From the time of Hipparchus and Ptolemy, the year was based on two equinoxes (or two solstices) a number of years apart, to average out both observational errors and periodic variations (caused by the gravitational pull of the planets, and the small effect of nutation on the equinox). These effects did not begin to be understood until Newton's time. To model short-term variations of the time between equinoxes (and prevent them from confounding efforts to measure long-term variations) requires precise observations and an elaborate theory of the apparent motion of the Sun. The necessary theories and mathematical tools came together in the 18th century due to the work of Pierre-Simon de Laplace, Joseph Louis Lagrange, and other specialists in
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, ...
. They were able to compute periodic variations and separate them from the gradual mean motion. They could express the mean longitude of the Sun in a polynomial such as: :''L''0 = ''A''0 + ''A''1''T'' + ''A''2''T''2 days where ''T'' is the time in Julian centuries. The derivative of this formula is an expression of the mean angular velocity, and the inverse of this gives an expression for the length of the tropical year as a linear function of ''T''. Two equations are given in the table. Both equations estimate that the tropical year gets roughly a half second shorter each century. Newcomb's tables were sufficiently accurate that they were used by the joint American-British ''
Astronomical Almanac ''The Astronomical Almanac''The ''Astronomical Almanac'' for the Year 2015, (United States Naval Observatory/Nautical Almanac Office, 2014) . is an almanac published by the United States Naval Observatory (USNO) and His Majesty's Nautical Almanac ...
'' for the Sun, Mercury,
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
, and
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
through 1983.


20th and 21st centuries

The length of the mean tropical year is derived from a model of the Solar System, so any advance that improves the solar system model potentially improves the accuracy of the mean tropical year. Many new observing instruments became available, including *artificial satellites *tracking of deep space probes such as Pioneer 4 beginning in 1959 *
radars Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
able to measure the distance to other planets beginning in 1961 * lunar laser ranging since the 1969
Apollo 11 Apollo 11 (July 16–24, 1969) was the American spaceflight that first landed humans on the Moon. Commander Neil Armstrong and lunar module pilot Buzz Aldrin landed the Apollo Lunar Module ''Eagle'' on July 20, 1969, at 20:17 UTC, ...
left the first of a series of
retroreflector A retroreflector (sometimes called a retroflector or cataphote) is a device or surface that reflects radiation (usually light) back to its source with minimum scattering. This works at a wide range of angle of incidence, unlike a planar mirro ...
s which allow greater accuracy than reflectorless measurements *artificial satellites such as
LAGEOS LAGEOS, Laser Geodynamics Satellite or Laser Geometric Environmental Observation Survey, are a series of two scientific research satellites designed to provide an orbiting laser ranging benchmark for geodynamical studies of the Earth. Each satel ...
(1976) and the
Global Positioning System The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite ...
(initial operation in 1993) *
very long baseline interferometry Very-long-baseline interferometry (VLBI) is a type of astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telescopes on Earth or in space. T ...
which finds precise directions to
quasar A quasar is an extremely luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a mass rangi ...
s in distant
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System ...
, and allows determination of the Earth's orientation with respect to these objects whose distance is so great they can be considered to show minimal space motion. The complexity of the model used for the Solar System must be limited to the available computation facilities. In the 1920s punched card equipment came into use by L. J. Comrie in Britain. For the ''American Ephemeris'' an electromagnetic computer, the IBM Selective Sequence Electronic Calculator was used since 1948. When modern computers became available, it was possible to compute ephemerides using
numerical integration In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equatio ...
rather than general theories; numerical integration came into use in 1984 for the joint US-UK almanacs.
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's
General Theory of Relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
provided a more accurate theory, but the accuracy of theories and observations did not require the refinement provided by this theory (except for the advance of the perihelion of Mercury) until 1984. Time scales incorporated general relativity beginning in the 1970s. A key development in understanding the tropical year over long periods of time is the discovery that the rate of rotation of the earth, or equivalently, the length of the mean solar day, is not constant. William Ferrel in 1864 and Charles-Eugène Delaunay in 1865 predicted that the rotation of the Earth is being retarded by tides. This could be verified by observation only in the 1920s with the very accurate Shortt-Synchronome clock and later in the 1930s when
quartz clock Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at leas ...
s began to replace pendulum clocks as time standards.


Time scales and calendar

Apparent solar time is the time indicated by a
sundial A sundial is a horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a f ...
, and is determined by the apparent motion of the Sun caused by the rotation of the Earth around its axis as well as the revolution of the Earth around the Sun.
Mean solar time Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Two types of solar time are apparent solar time ( sundia ...
is corrected for the periodic variations in the apparent velocity of the Sun as the Earth revolves in its orbit. The most important such time scale is
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
, which is the mean solar time at 0 degrees
longitude Longitude (, ) is a geographic coordinate that specifies the east– west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek let ...
(the
IERS Reference Meridian The IERS Reference Meridian (IRM), also called the International Reference Meridian, is the prime meridian (0° longitude) maintained by the International Earth Rotation and Reference Systems Service (IERS). It passes about 5.3 arcseconds east ...
).
Civil time In modern usage, civil time refers to statutory time as designated by civilian authorities. Modern civil time is generally national standard time in a time zone at a fixed offset from Coordinated Universal Time (UTC), possibly adjusted by dayligh ...
is based on UT (actually UTC), and civil calendars count mean solar days. However the rotation of the Earth itself is irregular and is slowing down, with respect to more stable time indicators: specifically, the motion of planets, and atomic clocks. Ephemeris time (ET) is the independent variable in the equations of motion of the Solar System, in particular, the equations from Newcomb's work, and this ET was in use from 1960 to 1984. These ephemerides were based on observations made in solar time over a period of several centuries, and as a consequence represent the mean solar second over that period. The SI
second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ea ...
, defined in atomic time, was intended to agree with the ephemeris second based on Newcomb's work, which in turn makes it agree with the mean solar second of the mid-19th century. ET as counted by atomic clocks was given a new name,
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses ...
(TT), and for most purposes ET = TT =
International Atomic Time International Atomic Time (abbreviated TAI, from its French name ) is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450 ato ...
+ 32.184 SI seconds. Since the era of the observations, the rotation of the Earth has slowed down and the mean solar second has grown somewhat longer than the SI second. As a result, the time scales of TT and UT1 build up a growing difference: the amount that TT is ahead of UT1 is known as Δ''T'', or Delta ''T''. TT is ahead of UT1 by 69.28 seconds. As a consequence, the tropical year following the seasons on Earth as counted in solar days of UT is increasingly out of sync with expressions for equinoxes in ephemerides in TT. As explained below, long-term estimates of the length of the tropical year were used in connection with the reform of the
Julian calendar The Julian calendar, proposed by Roman consul Julius Caesar in 46 BC, was a reform of the Roman calendar. It took effect on , by edict. It was designed with the aid of Greek mathematicians and astronomers such as Sosigenes of Alexandri ...
, which resulted in the Gregorian calendar. Participants in that reform were unaware of the non-uniform rotation of the Earth, but now this can be taken into account to some degree. The table below gives Morrison and Stephenson's estimates and
standard error The standard error (SE) of a statistic (usually an estimate of a parameter) is the standard deviation of its sampling distribution or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error o ...
s (''σ'') for ΔT at dates significant in the process of developing the Gregorian calendar. The low-precision extrapolations are computed with an expression provided by Morrison and Stephenson: :Δ''T'' in seconds = −20 + 32''t''2 where ''t'' is measured in Julian centuries from 1820. The extrapolation is provided only to show Δ''T'' is not negligible when evaluating the calendar for long periods; Borkowski cautions that "many researchers have attempted to fit a parabola to the measured Δ''T'' values in order to determine the magnitude of the deceleration of the Earth's rotation. The results, when taken together, are rather discouraging."


Length of tropical year

One definition of the tropical year would be the time required for the Sun, beginning at a chosen ecliptic longitude, to make one complete cycle of the seasons and return to the same ecliptic longitude.


Mean time interval between equinoxes

Before considering an example, the
equinox A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and se ...
must be examined. There are two important planes in solar system calculations: the plane of the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
(the Earth's orbit around the Sun), and the plane of the
celestial equator The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. This plane of reference bases the equatorial coordinate system. In other words, the celestial equator is an abstract proj ...
(the Earth's equator projected into space). These two planes intersect in a line. One ''direction'' points to the so-called vernal, northward, or March equinox which is given the symbol (the symbol looks like the horns of a ram because it used to be toward the constellation Aries). The opposite ''direction'' is given the symbol (because it used to be toward Libra). Because of the
precession of the equinoxes In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In partic ...
and nutation these directions change, compared to the direction of distant stars and galaxies, whose directions have no measurable motion due to their great distance (see International Celestial Reference Frame). The ecliptic longitude of the Sun is the angle between and the Sun, measured eastward along the ecliptic. This creates a relative and not an absolute measurement, because as the Sun is moving, the direction the angle is measured from is also moving. It is convenient to have a fixed (with respect to distant stars) direction to measure from; the direction of at noon January 1, 2000 fills this role and is given the symbol 0. There was an equinox on March 20, 2009, 11:44:43.6 TT. The 2010 March equinox was March 20, 17:33:18.1 TT, which gives an interval - and a duration of the tropical year - of 365 days 5 hours 48 minutes 34.5 seconds. While the Sun moves, moves in the opposite direction. When the Sun and met at the 2010 March equinox, the Sun had moved east 359°59'09" while had moved west 51" for a total of 360° (all with respect to 0). This is why the tropical year is 20 min. shorter than the sidereal year. When tropical year measurements from several successive years are compared, variations are found which are due to the perturbations by the Moon and planets acting on the Earth, and to nutation. Meeus and Savoie provided the following examples of intervals between March (northward) equinoxes: Until the beginning of the 19th century, the length of the tropical year was found by comparing equinox dates that were separated by many years; this approach yielded the ''mean'' tropical year.


Different tropical year definitions

If a different starting longitude for the Sun is chosen than 0° (''i.e.'' ), then the duration for the Sun to return to the same longitude will be different. This is a second-order effect of the circumstance that the speed of the Earth (and conversely the apparent speed of the Sun) varies in its elliptical orbit: faster in the
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
, slower in the
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any ell ...
. The equinox moves with respect to the perihelion (and both move with respect to the fixed sidereal frame). From one equinox passage to the next, or from one solstice passage to the next, the Sun completes not quite a full elliptic orbit. The time saved depends on where it starts in the orbit. If the starting point is close to the perihelion (such as the December solstice), then the speed is higher than average, and the apparent Sun saves little time for not having to cover a full circle: the "tropical year" is comparatively long. If the starting point is near aphelion, then the speed is lower and the time saved for not having to run the same small arc that the equinox has precessed is longer: that tropical year is comparatively short. The "mean tropical year" is based on the mean sun, and is not exactly equal to any of the times taken to go from an equinox to the next or from a solstice to the next. The following values of time intervals between equinoxes and solstices were provided by Meeus and Savoie for the years 0 and 2000. These are smoothed values which take account of the Earth's orbit being elliptical, using well-known procedures (including solving Kepler's equation). They do not take into account periodic variations due to factors such as the gravitational force of the orbiting Moon and gravitational forces from the other planets. Such perturbations are minor compared to the positional difference resulting from the orbit being elliptical rather than circular.


Mean tropical year current value

The mean tropical year on January 1, 2000, was or 365 ephemeris days, 5 hours, 48 minutes, 45.19 seconds. This changes slowly; an expression suitable for calculating the length of a tropical year in ephemeris days, between 8000 BC and 12000 AD is : 365.242 189 669 8-6.153 59\times 10^T-7.29\times 10^T^2 + 2.64\times 10^T^3 where T is in Julian centuries of 36,525 days of 86,400 SI seconds measured from noon January 1, 2000 TT. Modern astronomers define the tropical year as time for the Sun's mean longitude to increase by 360°. The process for finding an expression for the length of the tropical year is to first find an expression for the Sun's mean longitude (with respect to ), such as Newcomb's expression given above, or Laskar's expression. When viewed over a one-year period, the mean longitude is very nearly a linear function of Terrestrial Time. To find the length of the tropical year, the mean longitude is differentiated, to give the angular speed of the Sun as a function of Terrestrial Time, and this angular speed is used to compute how long it would take for the Sun to move 360°. The above formulae give the length of the tropical year in ephemeris days (equal to 86,400 SI seconds), not solar days. It is the number of solar days in a tropical year that is important for keeping the calendar in synch with the seasons (see below).


Calendar year

The
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years d ...
, as used for civil and scientific purposes, is an international standard. It is a solar calendar that is designed to maintain synchrony with the mean tropical year. It has a cycle of 400 years (146,097 days). Each cycle repeats the months, dates, and weekdays. The average year length is 146,097/400 = = 365.2425 days per year, a close approximation to the mean tropical year of 365.2422 days. The Gregorian calendar is a reformed version of the Julian calendar. By the time of the reform in 1582, the date of the vernal equinox had shifted about 10 days, from about March 21 at the time of the First Council of Nicaea in 325, to about March 11. According to North, the real motivation for reform was not primarily a matter of getting agricultural cycles back to where they had once been in the seasonal cycle; the primary concern of Christians was the correct observance of Easter. The rules used to compute the date of Easter used a conventional date for the vernal equinox (March 21), and it was considered important to keep March 21 close to the actual equinox. If society in the future still attaches importance to the synchronization between the civil calendar and the seasons, another reform of the calendar will eventually be necessary. According to Blackburn and Holford-Strevens (who used Newcomb's value for the tropical year) if the tropical year remained at its 1900 value of days the Gregorian calendar would be 3 days, 17 min, 33 s behind the Sun after 10,000 years. Aggravating this error, the length of the tropical year (measured in Terrestrial Time) is decreasing at a rate of approximately 0.53 s per century. Also, the mean solar day is getting longer at a rate of about 1.5 ms per century. These effects will cause the calendar to be nearly a day behind in 3200. The number of solar days in a "tropical millennium" is decreasing by about 0.06 per millennium (neglecting the oscillatory changes in the real length of the tropical year).365242×1.5/8640000. This means there should be fewer and fewer leap days as time goes on. A possible reform would be to omit the leap day in 3200, keep 3600 and 4000 as leap years, and thereafter make all centennial years common except 4500, 5000, 5500, 6000, etc. But the quantity ΔT is not sufficiently predictable to form more precise proposals.


See also

*
Anomalistic year A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hour ...
*
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years d ...
* Sidereal and tropical astrology


Notes


References

* * Via * * Note: In the article at this URL page 68 should be put before page 66. * * * * * *


Further reading

* * * Contains updates to . * Referenced in ''Astronomical almanac for the year 2011'' and contains expressions used to derive the length of the tropical year.


External links

* {{DEFAULTSORT:Tropical Year Units of time Calendars Time in astronomy Western astrology Technical factors of astrology