Functional analysis is a branch of
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions.
These theories are usually studied in ...
, the core of which is formed by the study of
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ca ...
s endowed with some kind of limit-related structure (e.g.
inner product
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
,
norm
Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envir ...
,
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, etc.) and the
linear function
In mathematics, the term linear function refers to two distinct but related notions:
* In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For dist ...
s defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of
spaces of functions and the formulation of properties of transformations of functions such as the
Fourier transform as transformations defining
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
,
unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of
differential and
integral equations.
The usage of the word ''
functional
Functional may refer to:
* Movements in architecture:
** Functionalism (architecture)
** Form follows function
* Functional group, combination of atoms within molecules
* Medical conditions without currently visible organic basis:
** Functional sy ...
'' as a noun goes back to the
calculus of variations
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions
and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
, implying a
function whose argument is a function. The term was first used in
Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the Italian mathematician and physicist
Vito Volterra
Vito Volterra (, ; 3 May 1860 – 11 October 1940) was an Italian mathematician and physicist, known for his contributions to mathematical biology and integral equations, being one of the founders of functional analysis.
Biography
Born in A ...
. The theory of nonlinear functionals was continued by students of Hadamard, in particular
Fréchet and
Lévy. Hadamard also founded the modern school of linear functional analysis further developed by
Riesz and the
group of
Polish mathematicians around
Stefan Banach
Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an origina ...
.
In modern introductory texts on functional analysis, the subject is seen as the study of vector spaces endowed with a topology, in particular
infinite-dimensional spaces. In contrast,
linear algebra deals mostly with finite-dimensional spaces, and does not use topology. An important part of functional analysis is the extension of the theory of
measure,
integration, and
probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking ...
to infinite dimensional spaces, also known as infinite dimensional analysis.
Normed vector spaces
The basic and historically first class of spaces studied in functional analysis are
complete
Complete may refer to:
Logic
* Completeness (logic)
* Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable
Mathematics
* The completeness of the real numbers, which implies ...
normed vector space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" ...
s over the
real or
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s. Such spaces are called
Banach space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vecto ...
s. An important example is a
Hilbert space, where the norm arises from an inner product. These spaces are of fundamental importance in many areas, including the
mathematical formulation of quantum mechanics
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
,
machine learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence.
Machin ...
,
partial differential equations
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.
The function is often thought of as an "unknown" to be solved for, similarly to ...
, and
Fourier analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph ...
.
More generally, functional analysis includes the study of
Fréchet spaces and other
topological vector space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis.
A topological vector space is a vector space that is als ...
s not endowed with a norm.
An important object of study in functional analysis are the
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
linear operators defined on Banach and Hilbert spaces. These lead naturally to the definition of
C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continu ...
s and other
operator algebra
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.
The results obtained in the study o ...
s.
Hilbert spaces
Hilbert spaces can be completely classified: there is a unique Hilbert space
up to Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R''
* if ''a'' and ''b'' are related by ''R'', that is,
* if ''aRb'' holds, that is,
* if the equivalence classes of ''a'' and ''b'' with respect to ''R'' ...
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
for every
cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of the
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, ...
. Finite-dimensional Hilbert spaces are fully understood in
linear algebra, and infinite-dimensional
separable Hilbert spaces are isomorphic to
. Separability being important for applications, functional analysis of Hilbert spaces consequently mostly deals with this space. One of the open problems in functional analysis is to prove that every bounded linear operator on a Hilbert space has a proper
invariant subspace. Many special cases of this
invariant subspace problem have already been proven.
Banach spaces
General
Banach space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vecto ...
s are more complicated than Hilbert spaces, and cannot be classified in such a simple manner as those. In particular, many Banach spaces lack a notion analogous to an
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, ...
.
Examples of Banach spaces are
-spaces for any real number Given also a measure
on set then sometimes also denoted
or has as its vectors equivalence classes