HOME

TheInfoList



OR:

Fluid power is the use of
fluids In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any she ...
under pressure to generate, control, and transmit power. Fluid power is subdivided into
hydraulics Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counte ...
using a liquid such as mineral oil or
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
, and pneumatics using a gas such as air or other gases. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine. Fluid power systems perform work by a pressurized fluid bearing directly on a piston in a cylinder or in a fluid motor. A fluid cylinder produces a force resulting in linear motion, whereas a fluid motor produces torque resulting in rotary motion. Within a fluid power system, cylinders and motors (also called
actuators An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a valve. In simple terms, it is a "mover". An actuator requires a control device (controlled by control signal) an ...
) do the desired work. Control components such as valves regulate the system.


Elements

A fluid power system has a pump driven by a prime mover (such as an electric motor or internal combustion engine) that converts mechanical energy into fluid energy, Pressurized fluid is controlled and directed by valves into an actuator device such as a
hydraulic cylinder A hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment ( engineering vehicles ...
or
pneumatic cylinder Pneumatic cylinders (sometimes known as air cylinders) are mechanical devices which use the power of compressed gas to produce a force in a reciprocating linear motion. Like hydraulic cylinders, something forces a piston to move in the desir ...
, to provide linear motion, or a
hydraulic motor A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, ...
or
pneumatic motor A pneumatic motor (air motor), or compressed air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed air energy to mechanical work through either linear or rotary ...
, to provide rotary motion or
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
. Rotary motion may be continuous or confined to less than one revolution.


Hydraulic pumps

Dynamic (non positive displacement) pumps This type is generally used for low-pressure, high volume flow applications. Since they are not capable of withstanding high pressures, there is little use in the fluid power field. Their maximum pressure is limited to 250-300 psi (1.7 - 2.0 MPa). This type of pump is primarily used for transporting fluids from one location to another. Centrifugal and axial flow propeller pumps are the two most common types of dynamic pumps. Positive displacement pumps This type is universally used for fluid power systems. With this pump, a fixed amount of fluid is ejected into the hydraulic system per revolution of pump shaft rotation. These pumps are capable of overcoming the pressure resulting from the mechanical loads on the system as well as the resistance to flow due to friction. These two features are highly desirable in fluid power pumps. These pumps also have the following advantages over non positive displacement pumps: *High-pressure capability (up to 12,000 psi, ca. 80 MPa) *Small compact size *High volumetric efficiency *Small changes in efficiency throughout the design pressure rangeEsposito, Anthony, ''Fluid Power With Applications'',


Characteristics

Fluid power systems can produce high power and high forces in small volumes, compared with electrically-driven systems. The forces that are exerted can be easily monitored within a system by gauges and meters. In comparison to systems that provide force through electricity or fuel, fluid power systems are known to have long service lives if maintained properly. The working fluid passing through a fluid motor inherently provides cooling of the motor, which must be separately arranged for an electric motor. Fluid motors normally produce no sparks, which are a source of ignition or explosions in hazardous areas containing flammable gases or vapors. Fluid power systems are susceptible to pressure and flow losses within pipes and control devices. Fluid power systems are equipped with filters and other measures to preserve the cleanliness of the working fluid. Any dirt in the system can cause wear of seals and leakage, or can obstruct control valves and cause erratic operation. The hydraulic fluid itself is sensitive to temperature and pressure along with being somewhat compressible. These can cause systems to not run properly. If not run properly, cavitation and
aeration Aeration (also called aerification or aeriation) is the process by which air is circulated through, mixed with or dissolved in a liquid or other substances that act as a fluid (such as soil). Aeration processes create additional surface area in ...
can occur.


Application

Mobile applications of fluid power are widespread. Nearly every self-propelled wheeled vehicle has either hydraulically-operated or pneumatically-operated brakes. Earthmoving equipment such as bulldozers, backhoes and others use powerful hydraulic systems for digging and also for propulsion. A very compact fluid power system is the
automatic transmission An automatic transmission (sometimes abbreviated to auto or AT) is a multi-speed transmission used in internal combustion engine-based motor vehicles that does not require any input from the driver to change forward gears under normal driving ...
found in many vehicles, which includes a hydraulic
torque converter A torque converter is a type of fluid coupling that transfers rotating power from a prime mover, like an internal combustion engine, to a rotating driven load. In a vehicle with an automatic transmission, the torque converter connects the power ...
. Fluid power is also used in automated systems, where tools or work pieces are moved or held using fluid power. Variable-flow control valves and position sensors may be included in a servomechanism system for precision machine tools. Below is a more detailed list of applications and categories that fluid power is used for: * Industrial (also known as fixed) ** metalworking ** injection molding ** controllers ** material handling * Aerospace ** landing gears ** brakes


Pneumatic and hydraulic systems compared

; Cost: Pneumatics are less expensive to build and operate. Air is used as the compressed medium, so there is no requirement to drain or recover fluid. Hydraulic systems use larger working pressures, and require larger parts than pneumatics. ; Precision: Unlike liquids, gases change volume significantly when pressurized making it difficult to achieve precision.


Common hydraulic circuit application


Synchronizing

This circuit works off of synchronization. As a cylinder reaches a certain point another will be activated, either by a hydraulic limit switch valve or by the build-up of pressure in the cylinder. These circuits are used in manufacturing. An example of this would be on an assembly line. As a hydraulic arm is activated to grab an object. It then will reach a point of extension or retraction, where the other cylinder is activated to screw a cap or top onto the object. Hence the term ''synchronizing''.


Regenerative

In a regenerative circuit, a double acting cylinder is used. This cylinder has a pump that has a fixed output. The use of a regenerative circuit permits use of a smaller size pump for any given application. This works by re-routing the fluid to the cap instead of back to the tank. For example, in a drilling process a regenerative circuit will allow drilling at a consistent speed, and retraction at a much faster speed. This gives the operator faster and more precise production.


Electrical control

Combinations of electrical control of fluid power elements are widespread in automated systems. A wide variety of measuring, sensing, or control elements are available in electrical form. These can be used to operate
solenoid valve A solenoid valve is an electromechanically operated valve. Solenoid valves differ in the characteristics of the electric current they use, the strength of the magnetic field they generate, the mechanism they use to regulate the fluid, and the ty ...
s or servo valves that control the fluid power element. Electrical control may be used to allow, for example, remote control of a fluid power system without running long control lines to a remotely located manual control valve.


See also

*
Hydraulic circuit Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and b ...
* Hydraulic power network * London Hydraulic Power Company * Pneumatic circuit *
Pneumatic actuator A pneumatic control valve actuator converts energy (typically in the form of compressed air) into mechanical motion. The motion can be rotary or linear, depending on the type of actuator. Principle of operation A Pneumatic actuator mainly co ...


References

*Esposito, Anthpny, ''Fluid Power With Applications'', * Esposito, Anthony, ''Fluid Power with Applications'', * Hydraulic Power System Analysis, A. Akers, M. Gassman, & R. Smith, Taylor & Francis, New York, 2006, {{DEFAULTSORT:Fluid Power Mechanical engineering