HOME

TheInfoList



OR:

A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a u ...
to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1), ISBN 978-92-822-2272-0. which is not explicitly shown. Dimensionless quantities are widely used in many fields, such as
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
,
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
,
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
, and
economics Economics () is the social science that studies the production, distribution, and consumption of goods and services. Economics focuses on the behaviour and interactions of economic agents and how economies work. Microeconomics anal ...
. Dimensionless quantities are distinct from quantities that have associated dimensions, such as
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
(measured in seconds). Dimensionless units are dimensionless values that serve as units of measurement for expressing other quantities, such as
radians The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that ...
(rad) or steradians (sr) for plane angles and solid angles, respectively. For example, optical extent is defined as having units of metres multiplied by steradians.International Commission on Illumination (CIE) e-ILV, CIE S 017:2020 ILV: International Lighting Vocabulary, 2nd edition.
/ref>


History

Quantities having dimension one, ''dimensionless quantities'', regularly occur in sciences, and are formally treated within the field of dimensional analysis. In the nineteenth century, French mathematician Joseph Fourier and Scottish physicist
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
led significant developments in the modern concepts of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
and unit. Later work by British physicists Osborne Reynolds and
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. A ...
contributed to the understanding of dimensionless numbers in physics. Building on Rayleigh's method of dimensional analysis, Edgar Buckingham proved the theorem (independently of French mathematician Joseph Bertrand's previous work) to formalize the nature of these quantities. Numerous dimensionless numbers, mostly ratios, were coined in the early 1900s, particularly in the areas of
fluid mechanics Fluid mechanics is the branch of physics concerned with the mechanics of fluids ( liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and ...
and
heat transfer Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy ( heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conducti ...
. Measuring ''ratios'' in the (derived) unit ''dB'' ( decibel) finds widespread use nowadays. There have been periodic proposals to "patch" the SI system to reduce confusion regarding physical dimensions. For example, a 2017 op-ed in
Nature Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
(1 page) argued for formalizing the
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that ...
as a physical unit. The idea was rebutted on the grounds that such a change would raise inconsistencies for both established dimensionless groups, like the Strouhal number, and for mathematically distinct entities that happen to have the same units, like
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
(a vector product) versus energy (a scalar product). In another instance in the early 2000s, the International Committee for Weights and Measures discussed naming the unit of 1 as the " uno", but the idea of just introducing a new SI name for 1 was dropped.


Integers

Integer numbers may be used to represent discrete dimensionless quantities. More specifically, counting numbers can be used to express countable quantities, such as the number of particles and population size. In mathematics, the "number of elements" in a set is termed '' cardinality''. ''
Countable noun In linguistics, a count noun (also countable noun) is a noun that can be modified by a quantity and that occurs in both singular and plural forms, and that can co-occur with quantificational determiners like ''every'', ''each'', ''several'', et ...
s'' is a related linguistics concept. Counting numbers, such as number of bits, can be compounded with units of frequency ( inverse second) to derive units of count rate, such as bits per second. Count data is a related concept in statistics.


Ratios, proportions, and angles

Dimensionless quantities are often obtained as
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
s of quantities that are not dimensionless, but whose dimensions cancel out in the mathematical operation. Examples include calculating
slope In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
s or unit conversion factors. A more complex example of such a ratio is engineering strain, a measure of physical deformation defined as a change in length divided by the initial length. Since both quantities have the dimension ''length'', their ratio is dimensionless. Another set of examples is mass fractions or mole fractions often written using parts-per notation such as ppm (= 10−6), ppb (= 10−9), and ppt (= 10−12), or perhaps confusingly as ratios of two identical units ( kg/kg or mol/mol). For example, alcohol by volume, which characterizes the concentration of
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
in an alcoholic beverage, could be written as . Other common proportions are percentages % (= 0.01),  
Per mille (from Latin , "in each thousand") is an expression that means parts per thousand. Other recognised spellings include per mil, per mill, permil, permill, or permille. The associated sign is written , which looks like a percent ...
 (= 0.001) and angle units such as turn,
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that ...
, degree (° = ) and grad (= ). In
statistics Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
the
coefficient of variation In probability theory and statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed a ...
is the ratio of the standard deviation to the
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ar ...
and is used to measure the
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variatio ...
in the
data In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpret ...
. It has been argued that quantities defined as ratios having equal dimensions in numerator and denominator are actually only ''unitless quantities'' and still have physical dimension defined as . For example, moisture content may be defined as a ratio of volumes (volumetric moisture, m3⋅m−3, dimension L⋅L) or as a ratio of masses (gravimetric moisture, units kg⋅kg−1, dimension M⋅M); both would be unitless quantities, but of different dimension.


Buckingham theorem

The Buckingham theorem indicates that validity of the laws of physics does not depend on a specific unit system. A statement of this theorem is that any physical law can be expressed as an
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an ...
involving only dimensionless combinations (ratios or products) of the variables linked by the law (e. g., pressure and volume are linked by Boyle's Law – they are inversely proportional). If the dimensionless combinations' values changed with the systems of units, then the equation would not be an identity, and Buckingham's theorem would not hold. Another consequence of the theorem is that the
functional Functional may refer to: * Movements in architecture: ** Functionalism (architecture) ** Form follows function * Functional group, combination of atoms within molecules * Medical conditions without currently visible organic basis: ** Functional sy ...
dependence between a certain number (say, ''n'') of variables can be reduced by the number (say, ''k'') of
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independe ...
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
s occurring in those variables to give a set of ''p'' = ''n'' − ''k'' independent, dimensionless quantities. For the purposes of the experimenter, different systems that share the same description by dimensionless
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a u ...
are equivalent.


Example

To demonstrate the application of the theorem, consider the power consumption of a stirrer with a given shape. The power, ''P'', in dimensions · L2/T3 is a function of the
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
, ''ρ'' /L3 and the
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
of the fluid to be stirred, ''μ'' /(L · T) as well as the size of the stirrer given by its
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid f ...
, ''D'' and the
angular speed Angular may refer to: Anatomy * Angular artery, the terminal part of the facial artery * Angular bone, a large bone in the lower jaw of amphibians and reptiles * Angular incisure, a small anatomical notch on the stomach * Angular gyrus, a region ...
of the stirrer, ''n'' /T Therefore, we have a total of ''n'' = 5 variables representing our example. Those ''n'' = 5 variables are built up from ''k'' = 3 fundamental dimensions, the length: L ( SI units: m), time: T ( s), and mass: M ( kg). According to the -theorem, the ''n'' = 5 variables can be reduced by the ''k'' = 3 dimensions to form ''p'' = ''n'' − ''k'' = 5 − 3 = 2 independent dimensionless numbers. Usually, these quantities are chosen as \mathrm = , commonly named the Reynolds number which describes the fluid flow regime, and N_\mathrm = \frac, the
power number : For Newton number, see also Kissing number in the sphere packing problem. The power number ''N''p (also known as Newton number) is a commonly used dimensionless number relating the resistance force to the inertia force. The power-number has ...
, which is the dimensionless description of the stirrer. Note that the two dimensionless quantities are not unique and depend on which of the ''n'' = 5 variables are chosen as the ''k'' = 3 independent basis variables, which appear in both dimensionless quantities. The Reynolds number and power number fall from the above analysis if \rho, ''n'', and ''D'' are chosen to be the basis variables. If instead, \mu, ''n'', and ''D'' are selected, the Reynolds number is recovered while the second dimensionless quantity becomes N_\mathrm = \frac. We note that N_\mathrm is the product of the Reynolds number and the power number.


Dimensionless physical constants

Certain universal dimensioned physical constants, such as the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
in a vacuum, the universal gravitational constant, the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
, the
Coulomb constant The Coulomb constant, the electric force constant, or the electrostatic constant (denoted , or ) is a proportionality constant in electrostatics equations. In SI base units it is equal to .Derived from ''k''e = 1/(4''πε''0) – It was named ...
, and the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constan ...
can be normalized to 1 if appropriate units for
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
,
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Inte ...
,
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
, charge, and
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
are chosen. The resulting system of units is known as the natural units, specifically regarding these five constants, Planck units. However, not all physical constants can be normalized in this fashion. For example, the values of the following constants are independent of the system of units, cannot be defined, and can only be determined experimentally: * ''α'' ≈ 1/137, the fine-structure constant, which characterizes the magnitude of the electromagnetic interaction between electrons. * ''β'' (or ''μ'') ≈ 1836, the
proton-to-electron mass ratio In physics, the proton-to-electron mass ratio, ''μ'' or ''β'', is the rest mass of the proton (a baryon found in atoms) divided by that of the electron (a lepton found in atoms), a dimensionless quantity, namely: :''μ'' = The number in parenthe ...
. This ratio is the rest mass of the proton divided by that of the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
. An analogous ratio can be defined for any
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...
; * ''α''s ≈ 1, a constant characterizing the strong nuclear force coupling strength; * The ratio of the mass of any given elementary particle to the Planck mass, \sqrt.


Other quantities produced by nondimensionalization

Physics often uses dimensionless quantities to simplify the characterization of systems with multiple interacting physical phenomena. These may be found by applying the Buckingham theorem or otherwise may emerge from making
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
unitless by the process of nondimensionalization. Engineering, economics, and other fields often extend these ideas in
design A design is a plan or specification for the construction of an object or system or for the implementation of an activity or process or the result of that plan or specification in the form of a prototype, product, or process. The verb ''to design' ...
and analysis of the relevant systems.


Physics and engineering

*
Fresnel number The Fresnel number (''F''), named after the physicist Augustin-Jean Fresnel, is a dimensionless number occurring in optics, in particular in scalar diffraction theory. Definition For an electromagnetic wave passing through an aperture and hitti ...
– wavenumber over distance * Mach number – ratio of the speed of an object or flow relative to the speed of sound in the fluid. * Beta (plasma physics) – ratio of plasma pressure to magnetic pressure, used in magnetospheric physics as well as fusion plasma physics. *
Damköhler numbers The Damköhler numbers (Da) are dimensionless numbers used in chemical engineering to relate the chemical reaction timescale (reaction rate) to the transport phenomena rate occurring in a system. It is named after German chemist Gerhard Damköhler. ...
(Da) – used in chemical engineering to relate the chemical reaction timescale (reaction rate) to the transport phenomena rate occurring in a system. * Thiele modulus – describes the relationship between diffusion and reaction rate in porous catalyst pellets with no mass transfer limitations. * Numerical aperture – characterizes the range of angles over which the system can accept or emit light. * Sherwood number – (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the convective mass transfer to the rate of diffusive mass transport. * Schmidt number – defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity, and is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. * Reynolds number is commonly used in fluid mechanics to characterize flow, incorporating both properties of the fluid and the flow. It is interpreted as the ratio of inertial forces to viscous forces and can indicate flow regime as well as correlate to frictional heating in application to flow in pipes. * Zukoski number, usually noted Q*, is the ratio of the heat release rate of a fire to the enthalpy of the gas flow rate circulating through the fire. Accidental and natural fires usually have a Q* of ~1. Flat spread fires such as forest fires have Q*<1. Fires originating from pressured vessels or pipes, with additional momentum caused by pressure, have Q*>>>1.


Chemistry

* Relative density – density relative to
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
*
Relative atomic mass Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a ...
,
Standard atomic weight The standard atomic weight of a chemical element (symbol ''A''r°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, ...
*
Equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
(which is sometimes dimensionless)


Other fields

*
Cost of transport The energy cost of transport quantifies the energy efficiency of transporting an animal or vehicle from one place to another. As a dimensionless quantity, it allows for the comparison of dissimilar animals or modes of transportation. It has a wide ...
is the efficiency in moving from one place to another * Elasticity is the measurement of the proportional change of an economic variable in response to a change in another


See also

* Arbitrary unit * Dimensional analysis * Normalization (statistics) and standardized moment, the analogous concepts in
statistics Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
* Orders of magnitude (numbers) * Similitude (model) * List of dimensionless quantities


References


Further reading

*

(15 pages)


External links

* {{Commons category-inline, Dimensionless numbers Dimensionless numbers, Mathematical concepts Physical constants