differential topology
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, differential topology is the field dealing with the topological properties and smooth properties of
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
s. In this sense differential topology is distinct from the closely related field of
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, which concerns the ''geometric'' properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
. The central goal of the field of differential topology is the
classification Classification is the activity of assigning objects to some pre-existing classes or categories. This is distinct from the task of establishing the classes themselves (for example through cluster analysis). Examples include diagnostic tests, identif ...
of all smooth manifolds up to
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
. Since dimension is an invariant of smooth manifolds up to diffeomorphism type, this classification is often studied by classifying the ( connected) manifolds in each dimension separately: * In dimension 1, the only smooth manifolds up to diffeomorphism are the
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
, the
real number line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin point representing the number zero and evenly spaced marks in either direc ...
, and allowing a boundary, the half-closed interval ,1) and fully closed interval [0,1/math>.Milnor, J. and Weaver, D.W., 1997. Topology from the differentiable viewpoint. Princeton university press. * In dimension 2, every closed surface is classified up to diffeomorphism by its genus (topology), genus, the number of holes (or equivalently its Euler characteristic), and whether or not it is orientable. This is the famous classification of closed surfaces.Lee, J., 2010. Introduction to topological manifolds (Vol. 202). Springer Science & Business Media. Already in dimension two the classification of non-
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
surfaces becomes difficult, due to the existence of exotic spaces such as Jacob's ladder. * In dimension 3,
William Thurston William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds. Thurst ...
's geometrization conjecture, proven by Grigori Perelman, gives a partial classification of compact three-manifolds. Included in this theorem is the Poincaré conjecture, which states that any closed,
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
three-manifold is
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
(and in fact diffeomorphic) to the 3-sphere. Beginning in dimension 4, the classification becomes much more difficult for two reasons. Firstly, every finitely presented group appears as the fundamental group of some 4-manifold, and since the fundamental group is a diffeomorphism invariant, this makes the classification of 4-manifolds at least as difficult as the classification of finitely presented groups. By the
word problem for groups A word is a basic element of language that carries meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no consensus among linguists on its ...
, which is equivalent to the
halting problem In computability theory (computer science), computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run for ...
, it is impossible to classify such groups, so a full topological classification is impossible. Secondly, beginning in dimension four it is possible to have smooth manifolds that are homeomorphic, but with distinct, non-diffeomorphic smooth structures. This is true even for the Euclidean space \mathbb^4, which admits many exotic \mathbb^4 structures. This means that the study of differential topology in dimensions 4 and higher must use tools genuinely outside the realm of the regular continuous topology of topological manifolds. One of the central open problems in differential topology is the four-dimensional smooth Poincaré conjecture, which asks if every smooth 4-manifold that is homeomorphic to the 4-sphere, is also diffeomorphic to it. That is, does the 4-sphere admit only one smooth structure? This conjecture is true in dimensions 1, 2, and 3, by the above classification results, but is known to be false in dimension 7 due to the Milnor spheres. Important tools in studying the differential topology of smooth manifolds include the construction of smooth topological invariants of such manifolds, such as
de Rham cohomology In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
or the intersection form, as well as smoothable topological constructions, such as smooth
surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while An ...
or the construction of cobordisms. Morse theory is an important tool which studies smooth manifolds by considering the critical points of
differentiable function In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
s on the manifold, demonstrating how the smooth structure of the manifold enters into the set of tools available. Oftentimes more geometric or analytical techniques may be used, by equipping a smooth manifold with a
Riemannian metric In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
or by studying a differential equation on it. Care must be taken to ensure that the resulting information is insensitive to this choice of extra structure, and so genuinely reflects only the topological properties of the underlying smooth manifold. For example, the Hodge theorem provides a geometric and analytical interpretation of the de Rham cohomology, and
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
was used by
Simon Donaldson Sir Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth function, smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähl ...
to prove facts about the intersection form of simply connected 4-manifolds.Donaldson, S.K., Donaldson, S.K. and Kronheimer, P.B., 1997. The geometry of four-manifolds. Oxford university press. In some cases techniques from contemporary
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
may appear, such as
topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory that computes topological invariants. While TQFTs were invented by physicists, they are also of mathemati ...
, which can be used to compute topological invariants of smooth spaces. Famous theorems in differential topology include the Whitney embedding theorem, the
hairy ball theorem The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous function, continuous tangent vector field on even-dimensional n‑sphere, ''n''-spheres. For the ord ...
, the Hopf theorem, the Poincaré–Hopf theorem, Donaldson's theorem, and the Poincaré conjecture.


Description

Differential topology considers the properties and structures that require only a smooth structure on a manifold to be defined. Smooth manifolds are 'softer' than manifolds with extra geometric structures, which can act as obstructions to certain types of equivalences and deformations that exist in differential topology. For instance, volume and Riemannian curvature are invariants that can distinguish different geometric structures on the same smooth manifold—that is, one can smoothly "flatten out" certain manifolds, but it might require distorting the space and affecting the curvature or volume. On the other hand, smooth manifolds are more rigid than the topological manifolds. John Milnor discovered that some spheres have more than one smooth structure—see Exotic sphere and Donaldson's theorem. Michel Kervaire exhibited topological manifolds with no smooth structure at all. Some constructions of smooth manifold theory, such as the existence of
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
s, can be done in the topological setting with much more work, and others cannot. One of the main topics in differential topology is the study of special kinds of smooth mappings between manifolds, namely immersions and submersions, and the intersections of submanifolds via transversality. More generally one is interested in properties and invariants of smooth manifolds that are carried over by diffeomorphisms, another special kind of smooth mapping. Morse theory is another branch of differential topology, in which topological information about a manifold is deduced from changes in the rank of the Jacobian of a function. For a list of differential topology topics, see the following reference: List of differential geometry topics.


Differential topology versus differential geometry

Differential topology and differential geometry are first characterized by their ''similarity''. They both study primarily the properties of differentiable manifolds, sometimes with a variety of structures imposed on them. One major difference lies in the nature of the problems that each subject tries to address. In one view, differential topology distinguishes itself from differential geometry by studying primarily those problems that are ''inherently global''. Consider the example of a coffee cup and a donut. From the point of view of differential topology, the donut and the coffee cup are ''the same'' (in a sense). This is an inherently global view, though, because there is no way for the differential topologist to tell whether the two objects are the same (in this sense) by looking at just a tiny (''local'') piece of either of them. They must have access to each entire (''global'') object. From the point of view of differential geometry, the coffee cup and the donut are ''different'' because it is impossible to rotate the coffee cup in such a way that its configuration matches that of the donut. This is also a global way of thinking about the problem. But an important distinction is that the geometer does not need the entire object to decide this. By looking, for instance, at just a tiny piece of the handle, they can decide that the coffee cup is different from the donut because the handle is thinner (or more curved) than any piece of the donut. To put it succinctly, differential topology studies structures on manifolds that, in a sense, have no interesting local structure. Differential geometry studies structures on manifolds that do have an interesting local (or sometimes even infinitesimal) structure. More mathematically, for example, the problem of constructing a
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
between two manifolds of the same dimension is inherently global since ''locally'' two such manifolds are always diffeomorphic. Likewise, the problem of computing a quantity on a manifold that is invariant under differentiable mappings is inherently global, since any local invariant will be ''trivial'' in the sense that it is already exhibited in the topology of \R^n. Moreover, differential topology does not restrict itself necessarily to the study of diffeomorphism. For example, symplectic topology—a subbranch of differential topology—studies global properties of
symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sy ...
s. Differential geometry concerns itself with problems—which may be local ''or'' global—that always have some non-trivial local properties. Thus differential geometry may study differentiable manifolds equipped with a '' connection'', a '' metric'' (which may be Riemannian, pseudo-Riemannian, or Finsler), a special sort of '' distribution'' (such as a CR structure), and so on. This distinction between differential geometry and differential topology is blurred, however, in questions specifically pertaining to local diffeomorphism invariants such as the tangent space at a point. Differential topology also deals with questions like these, which specifically pertain to the properties of differentiable mappings on \R^n (for example the
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
, jet bundles, the
Whitney extension theorem In mathematics, in particular in mathematical analysis, the Whitney extension theorem is a partial converse to Taylor's theorem. Roughly speaking, the theorem asserts that if ''A'' is a closed subset of a Euclidean space, then it is possible to ...
, and so forth). The distinction is concise in abstract terms: *Differential topology is the study of the (infinitesimal, local, and global) properties of structures on manifolds that have ''only trivial'' local moduli. *Differential geometry is such a study of structures on manifolds that have one or more ''non-trivial'' local moduli.


See also

* List of differential geometry topics * Glossary of differential geometry and topology * Important publications in differential geometry * Important publications in differential topology * Basic introduction to the mathematics of curved spacetime


Notes


References

* * * *


External links

* {{Authority control