composite number
   HOME

TheInfoList



OR:

A composite number is a
positive integer In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. For example, the integer 14 is a composite number because it is the product of the two smaller integers 2 ×  7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150. Every composite number can be written as the product of two or more (not necessarily distinct) primes. For example, the composite number
299 __NOTOC__ Year 299 (Roman numerals, CCXCIX) was a common year starting on Sunday (link will display the full calendar) of the Julian calendar. In the Roman Empire, it was known as the Year of the Consulship of Diocletian and Maximian (or, l ...
can be written as 13 × 23, and the composite number
360 360 may refer to: * 360 (number) * 360 AD, a year * 360 BC, a year * 360 degrees, a circle Businesses and organizations * 360 Architecture, an American architectural design firm * Ngong Ping 360, a tourism project in Lantau Island, Hong Kong * Q ...
can be written as 23 × 32 × 5; furthermore, this representation is unique
up to Two Mathematical object, mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' wi ...
the order of the factors. This fact is called the fundamental theorem of arithmetic. There are several known
primality test A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whet ...
s that can determine whether a number is prime or composite, without necessarily revealing the factorization of a composite input.


Types

One way to classify composite numbers is by counting the number of prime factors. A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime factors and those with an even number of distinct prime factors. For the latter :\mu(n) = (-1)^ = 1 (where μ is the Möbius function and ''x'' is half the total of prime factors), while for the former :\mu(n) = (-1)^ = -1. However, for prime numbers, the function also returns −1 and \mu(1) = 1. For a number ''n'' with one or more repeated prime factors, :\mu(n) = 0. If ''all'' the prime factors of a number are repeated it is called a powerful number (All perfect powers are powerful numbers). If ''none'' of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 23 × 32, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Another way to classify composite numbers is by counting the number of divisors. All composite numbers have at least three divisors. In the case of squares of primes, those divisors are \. A number ''n'' that has more divisors than any ''x'' < ''n'' is a
highly composite number __FORCETOC__ A highly composite number is a positive integer with more divisors than any smaller positive integer has. The related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller ...
(though the first two such numbers are 1 and 2). Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers, numbers that are the product of two consecutive integers. Yet another way to classify composite numbers is to determine whether all prime factors are either all below or all above some fixed (prime) number. Such numbers are called smooth numbers and rough numbers, respectively.


See also

* Canonical representation of a positive integer *
Integer factorization In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are suf ...
*
Sieve of Eratosthenes In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit. It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime n ...
* Table of prime factors


Notes


References

* * * * *


External links


Lists of composites with prime factorization (first 100, 1,000, 10,000, 100,000, and 1,000,000)


{{Divisor classes Composite Integer sequences Arithmetic Elementary number theory