
In
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, a white hole is a hypothetical region of
spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
and
singularity that cannot be entered from the outside, although
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
,
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
,
light
Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
and
information
Information is an Abstraction, abstract concept that refers to something which has the power Communication, to inform. At the most fundamental level, it pertains to the Interpretation (philosophy), interpretation (perhaps Interpretation (log ...
can escape from it. In this sense, it is the reverse of a
black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
, from which energy, matter, light and information cannot escape. White holes appear in the theory of
eternal black holes. In addition to a black hole region in the future, such a solution of the
Einstein field equations
In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
has a white hole region in its past. This region does not exist for black holes that have formed through
gravitational collapse
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
, however, nor are there any observed physical processes through which a white hole could be formed.
Supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (). Black holes are a class of astronomical ...
s (SMBHs) are theoretically predicted to be at the center of every
galaxy
A galaxy is a Physical system, system of stars, stellar remnants, interstellar medium, interstellar gas, cosmic dust, dust, and dark matter bound together by gravity. The word is derived from the Ancient Greek, Greek ' (), literally 'milky', ...
and may be essential for their formation.
Stephen Hawking
Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between ...
and others have proposed that these supermassive black holes could
spawn
Spawn or spawning may refer to:
* Spawning, the eggs and sperm of aquatic animals
Arts, entertainment and media
* Spawn (character), a fictional character in the comic series of the same name and in the associated franchise
** ''Spawn: Armageddon' ...
supermassive white holes.
Overview
Like black holes, white holes have properties such as
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
,
charge
Charge or charged may refer to:
Arts, entertainment, and media Films
* ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary
Music
* ''Charge'' (David Ford album)
* ''Charge'' (Machel Montano album)
* '' Charge!!'', an album by The Aqu ...
, and
angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
. They attract matter like any other mass, but objects falling towards a white hole would never actually reach the white hole's
event horizon
In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s.
In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive c ...
(though in the case of the
maximally extended Schwarzschild solution, discussed below, the white hole event horizon in the past becomes a black hole event horizon in the future, so any object falling towards it will eventually reach the black hole horizon). Imagine a gravitational field, without a surface. Acceleration due to gravity is the greatest on the surface of any body. But since black holes lack a surface, acceleration due to gravity increases exponentially, but never reaches a final value as there is no considered surface in a singularity.
In
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, the black hole emits
Hawking radiation
Hawking radiation is black-body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974.
The radiation was not predicted by previous models which assumed that onc ...
and so it can come to
thermal equilibrium
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in t ...
with a gas of radiation (not compulsory). Because a thermal-equilibrium state is time-reversal-invariant,
Stephen Hawking
Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between ...
argued that the time reversal of a black hole in thermal equilibrium results in a white hole in thermal equilibrium (each absorbing and emitting energy to equivalent degrees). Consequently, this may imply that black holes and white holes are reciprocal in structure, wherein the Hawking radiation from an ordinary black hole is identified with a white hole's emission of energy and matter. Hawking's semi-classical argument is reproduced in a quantum mechanical
AdS/CFT treatment, where a black hole in
anti-de Sitter space
In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a symmetric_space, maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are na ...
is described by a thermal gas in a
gauge theory
In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
, whose time reversal is the same as itself.
History

In the 1930s, physicists
Robert Oppenheimer
J. Robert Oppenheimer (born Julius Robert Oppenheimer ; April 22, 1904 – February 18, 1967) was an American theoretical physicist who served as the director of the Manhattan Project's Los Alamos Laboratory during World War II. He is often ...
and
Hartland Snyder introduced the idea of white holes as a solution to
Einstein's equations of
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. These equations, the foundation of modern physics, describe the curvature of spacetime due to massive objects. Whereas
black holes
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
are born from the collapse of stars, white holes represent the theoretical birth of space, time, and potentially even universes. At the center, space and time do not end into a singularity, but continue across a short transition region where the
Einstein equations are violated by quantum effects. From this region, space and time emerge with the structure of a white hole interior, a possibility already suggested by
John Lighton Synge.
The possibility of the existence of white holes was put forward by cosmologist
Igor Novikov in 1964, developed by
Nikolai Kardashev. White holes are predicted as part of a solution to the
Einstein field equations
In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
known as the
maximally extended version of the
Schwarzschild metric
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumpti ...
describing an eternal
black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
with no charge and no rotation. Here, "maximally extended" implies that
spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
should not have any "edges". For any possible trajectory of a free-falling particle (following a
geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
) in spacetime, it should be possible to continue this path arbitrarily far into the particle's future, unless the trajectory hits a
gravitational singularity
A gravitational singularity, spacetime singularity, or simply singularity, is a theoretical condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by defini ...
like the one at the center of the black hole's interior. In order to satisfy this requirement, it turns out that in addition to the black hole interior region that particles enter when they fall through the
event horizon
In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s.
In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive c ...
from the outside, there must be a separate white hole interior region, which allows us to extrapolate the trajectories of particles that an outside observer sees rising up ''away'' from the event horizon. For an observer outside using
Schwarzschild coordinates, infalling particles take an infinite time to reach the black hole horizon infinitely far in the future, while outgoing particles that pass the observer have been traveling outward for an infinite time since crossing the white hole horizon infinitely far in the past (however, the particles or other objects experience only a finite
proper time
In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time ...
between crossing the horizon and passing the outside observer). The black hole/white hole appears "eternal" from the perspective of an outside observer, in the sense that particles traveling outward from the white hole interior region can pass the observer at any time, and particles traveling inward, which will eventually reach the black hole interior region can also pass the observer at any time.
Just as there are two separate interior regions of the maximally extended spacetime, there are also two separate exterior regions, sometimes called two different "universes", with the second universe allowing us to extrapolate some possible particle trajectories in the two interior regions. This means that the interior black-hole region can contain a mix of particles that fell in from either universe (and thus an observer who fell in from one universe might be able to see light that fell in from the other one), and likewise particles from the interior white-hole region can escape into either universe. All four regions can be seen in a spacetime diagram that uses
Kruskal–Szekeres coordinates (see figure).
In this spacetime, it is possible to come up with coordinate systems such that if you pick a
hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
of constant time (a set of points that all have the same time coordinate, such that every point on the surface has a
space-like separation, giving what is called a 'space-like surface') and draw an "embedding diagram" depicting the curvature of space at that time, the embedding diagram will look like a tube connecting the two exterior regions, known as an "Einstein-Rosen bridge" or
Schwarzschild wormhole.
Depending on where the space-like hypersurface is chosen, the Einstein-Rosen bridge can either connect two black hole event horizons in each universe (with points in the interior of the bridge being part of the black hole region of the spacetime), or two white hole event horizons in each universe (with points in the interior of the bridge being part of the white hole region). It is impossible to use the bridge to cross from one universe to the other, however, because it is impossible to enter a white hole event horizon from the outside, and anyone entering a black hole horizon from either universe will inevitably hit the black hole singularity.
Note that the maximally extended Schwarzschild metric describes an idealized black hole/white hole that exists eternally from the perspective of external observers; a more realistic black hole that forms at some particular time from a collapsing star would require a different metric. When the infalling stellar matter is added to a diagram of a black hole's history, it removes the part of the diagram corresponding to the white hole interior region.
But because the equations of general relativity are time-reversible – they exhibit
Time reversal symmetry – general relativity must also allow the time-reverse of this type of "realistic" black hole that forms from collapsing matter. The time-reversed case would be a white hole that has existed since the beginning of the universe, and that emits matter until it finally "explodes" and disappears.
Despite the fact that such objects are permitted theoretically, they are not taken as seriously as black holes by physicists, since there would be no processes that would naturally lead to their formation; they could exist only if they were built into the initial conditions of the
Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
.
Additionally, it is predicted that such a white hole would be highly "unstable" in the sense that if any small amount of matter fell towards the horizon from the outside, this would prevent the white hole's explosion as seen by distant observers, with the matter emitted from the singularity never able to escape the white hole's gravitational radius.
Properties
Depending on the type of black hole solution considered, there are several types of white holes. In the case of the Schwarzschild black hole mentioned above, a geodesic coming out of a white hole comes from the "gravitational singularity" it contains. In the case of a black hole possessing an
electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
ψ ** Ώ ** ώ (
Reissner-Nordström black hole) or an
angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, then the white hole happens to be the "exit door" of a black hole existing in another universe. Such a black hole – white hole configuration is called a
wormhole
A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are base ...
. In both cases, however, it is not possible to reach the region "in" the white hole, so the behavior of it – and, in particular, what may come out of it – is completely impossible to predict. In this sense, a white hole is a configuration according to which the evolution of the universe cannot be predicted, because it is not deterministic. A "bare singularity" is another example of a non-deterministic configuration, but does not have the status of a white hole, however, because there is no region inaccessible from a given region. In its basic conception, the
Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
can be seen as a naked singularity in outer space, but does not correspond to a white hole.
Physical relevance
In its mode of formation, a black hole comes from a residue of a massive
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
whose core contracts until it turns into a black hole. Such a configuration is not static: we start from a massive and extended body which contracts to give a black hole. The black hole therefore does not exist for all eternity, and there is no corresponding white hole.
To be able to exist, a white hole must either arise from a physical process leading to its formation, or be present from the creation of the
universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
. None of these solutions appears satisfactory: there is no known
astrophysical process that can lead to the formation of such a configuration, and imposing it from the creation of the universe amounts to assuming a very specific set of initial conditions which has no concrete motivation.
In view of the enormous quantities radiated by
quasars
A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
, whose luminosity makes it possible to observe them from several billion
light-years
A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astro ...
away, it had been assumed that they were the seat of exotic physical phenomena such as a white hole, or a phenomenon of continuous creation of matter (see the article on the
steady state theory). These ideas are now abandoned, the observed properties of quasars being very well explained by those of an
accretion disk
An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and ...
in the center of which is a
supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (). Black holes are a class of astronomical ...
.
[
]
Big Bang/Supermassive White Hole
A view of black holes first proposed in the late 1980s might be interpreted as shedding some light on the nature of classical white holes. Some researchers have proposed that when a black hole forms, a Big Bang may occur at the core/ singularity, which would create a new universe that expands outside of the ''parent universe''.
The Einstein–Cartan–Sciama–Kibble theory of gravity extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor
In differential geometry, the torsion tensor is a tensor that is associated to any affine connection. The torsion tensor is a bilinear map of two input vectors X,Y, that produces an output vector T(X,Y) representing the displacement within a t ...
, as a dynamical variable. Torsion naturally accounts for the quantum-mechanical, intrinsic angular momentum ( spin) of matter. According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular black hole. In the Einstein–Cartan theory, however, the minimal coupling between torsion and Dirac spinor
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain comb ...
s generates a repulsive spin–spin interaction that is significant in fermionic matter at extremely high densities. Such an interaction prevents the formation of a gravitational singularity. Instead, the collapsing matter on the other side of the event horizon reaches an enormous but finite density and rebounds, forming a regular Einstein–Rosen bridge. The other side of the bridge becomes a new, growing baby universe. For observers in the baby universe, the parent universe appears as the only white hole. Accordingly, the observable universe
The observable universe is a Ball (mathematics), spherical region of the universe consisting of all matter that can be observation, observed from Earth; the electromagnetic radiation from these astronomical object, objects has had time to reach t ...
is the Einstein–Rosen interior of a black hole existing as one of possibly many inside a larger universe. The Big Bang was a nonsingular Big Bounce
The Big Bounce hypothesis is a cosmological model for the origin of the known universe. It was originally suggested as a phase of the ''cyclic model'' or ''oscillatory universe'' interpretation of the Big Bang, where the first cosmological event ...
at which the observable universe had a finite, minimum scale factor.
Shockwave cosmology, proposed by Joel Smoller and Blake Temple in 2003, has the “big bang” as an explosion inside a black hole, producing the expanding volume of space and matter that includes the observable universe. This black hole eventually becomes a white hole as the matter density reduces with the expansion. A related theory gives an alternative to dark energy.
A 2012 paper argues that the Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
itself is a white hole. It further suggests that the emergence of a white hole, which was named a "Small Bang", is spontaneous—all the matter is ejected at a single pulse. Thus, unlike black holes, white holes cannot be continuously observed; rather, their effects can be detected only around the event itself. The paper even proposed identifying a new group of gamma-ray burst
In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic events occurring in distant Galaxy, galaxies which represent the brightest and most powerful class of explosion in the universe. These extreme Electromagnetic radiation, ele ...
s with white holes.
Various hypotheses
Unlike black holes for which there is a well-studied physical process, gravitational collapse
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
(which gives rise to black holes when a star somewhat more massive than the sun exhausts its nuclear "fuel"), there is no clear analogous process that leads reliably to the production of white holes. Although some hypotheses have been put forward:
* White holes as a kind of "exit" from black holes, both types of singularities would probably be connected by a wormhole
A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are base ...
(note that, like white holes, wormholes have not yet been found); when quasars
A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
were discovered it was assumed that these were the sought-after white holes but this assumption has now been discarded.
* Another widespread idea is that white holes would be very unstable, would last a very short time and even after forming could collapse and become black holes.
* Astronomers Alon Retter and Shlomo Heller suggest that the GRB 060614 anomalous gamma-ray burst that occurred in 2006 was a "white hole".
* In 2014, the idea of the Big Bang being produced by a supermassive white hole explosion was explored in the framework of a five-dimensional vacuum by Madriz Aguilar, Moreno and Bellini.
* Finally, it has been postulated that white holes could be the temporal inverse of a black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
.
At present, very few scientists believe in the existence of white holes and it is considered only a mathematical exercise with no real-world counterpart.
In popular culture
* A ''white hole'' appears in the ''Red Dwarf
A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are ...
'' episode of the same name, wherein the protagonists must find a way to deal with its temporal effects.
* A ''white hole'' serves as a major source of conflict in the ''Yu-Gi-Oh! GX
''Yu-Gi-Oh! GX'', also known in Japan as , is a Japanese anime television series. It is a Spin-off (media), spin-off and sequel to the original ''Yu-Gi-Oh! Duel Monsters, Yu-Gi-Oh!'' anime series, which itself is based on the original man ...
'' anime, as the radiance it exudes is both sentient and evil, known as the Light of Destruction. The ''Yu-Gi-Oh!
is a Japanese manga series written and illustrated by Kazuki Takahashi. It was serialized in Shueisha's manga magazine ''Weekly Shōnen Jump'' between September 1996 and March 2004, with its chapters collected in 38 volumes. The ...
'' card game also has a card named "White Hole".
* A ''white hole'' serves as a very important location in the video game
A video game or computer game is an electronic game that involves interaction with a user interface or input device (such as a joystick, game controller, controller, computer keyboard, keyboard, or motion sensing device) to generate visual fe ...
''Outer Wilds
''Outer Wilds'' is a 2019 action-adventure game developed by Mobius Digital and published by Annapurna Interactive. The game follows the player character as they explore a planetary system stuck in a 22-minute time loop that resets after the ...
''. In this game, falling into the black hole in the center of the planet ''Brittle Hollow'' leads to this ''white hole''.
* A ''white hole'' appears in the animated television series '' Voltron: Legendary Defender''.
See also
* Arrow of time
An arrow is a fin-stabilized projectile launched by a bow. A typical arrow usually consists of a long, stiff, straight shaft with a weighty (and usually sharp and pointed) arrowhead attached to the front end, multiple fin-like stabilizers ca ...
* White hole cosmology
* Big Bounce
The Big Bounce hypothesis is a cosmological model for the origin of the known universe. It was originally suggested as a phase of the ''cyclic model'' or ''oscillatory universe'' interpretation of the Big Bang, where the first cosmological event ...
* Gravitational singularity
A gravitational singularity, spacetime singularity, or simply singularity, is a theoretical condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by defini ...
* Black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
* Black hole cosmology
* Conformal cyclic cosmology
* Dark matter
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
* Dark energy
In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
* Exotic matter
There are several proposed types of exotic matter:
* Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist.
* Several particles who ...
* Naked singularity
* Antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
* Antimatter
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
* Negative mass
In theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and exhibit strange properties ...
* Negative energy
Negative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects.
Gravitational energy
Gravitational energy, or gravitational potential energy, is the po ...
* Planck star
* Quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
* Spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
* Star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
* Wormhole
A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are base ...
* Quasar
A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
* Q star
* Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
* Multiverse
The multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describ ...
* Many-worlds interpretation
The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is Philosophical realism, objectively real, and that there is no wave function collapse. This implies that all Possible ...
References
External links
Embedding of the inverted Schwarzschild Solution
2d plot White hole in Google
Shockwave cosmology inside a Black Hole
End of Black Hole Is Starting of Big Bang – Discussed in Newsgroup in 1999
Forward to the Future 1:Trapped in Time!
Forward to the Future 2:Back to the Past, with Interest...
{{DEFAULTSORT:White Hole
White holes
Gravity
Concepts in astronomy
General relativity
Hypothetical astronomical objects
Astrophysics