The vibration theory of
smell proposes that a molecule's smell character is due to its
vibrational frequency in the infrared range. This controversial theory is an alternative to the more widely accepted
docking theory of olfaction (formerly termed the shape theory of olfaction), which proposes that a molecule's smell character is due to a range of weak
non-covalent interactions
In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The ...
between its
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
odorant receptor (found in the
nasal
Nasal is an adjective referring to the nose, part of human or animal anatomy. It may also be shorthand for the following uses in combination:
* With reference to the human nose:
** Nasal administration, a method of pharmaceutical drug delivery
* ...
epithelium
Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
), such as
electrostatic
Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word (), mean ...
and
Van der Waals interactions as well as
H-bonding,
dipole
In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways:
* An electric dipole moment, electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple ...
attraction,
pi-stacking, metal ion,
Cation–pi interaction, and
hydrophobic
In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.
Hydrophobic molecules tend to be nonpolar and, thu ...
effects, in addition to the molecule's conformation.
Introduction
The current vibration theory has recently been called the "swipe card" model, in contrast with "lock and key" models based on shape theory.
As proposed by
Luca Turin, the odorant molecule must first fit in the receptor's binding site. Then it must have a vibrational energy mode compatible with the difference in energies between two energy levels on the receptor, so electrons can travel through the molecule via inelastic
electron tunneling, triggering the
signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a biochemical cascade, series of molecular events. Proteins responsible for detecting stimuli are generally termed receptor (biology), rece ...
pathway.
The vibration theory is discussed in a popular but controversial book by Chandler Burr.
The odor character is encoded in the ratio of activities of receptors tuned to different vibration frequencies, in the same way that
color
Color (or colour in English in the Commonwealth of Nations, Commonwealth English; American and British English spelling differences#-our, -or, see spelling differences) is the visual perception based on the electromagnetic spectrum. Though co ...
is encoded in the ratio of activities of
cone cell
Cone cells or cones are photoreceptor cells in the retina of the vertebrate eye. Cones are active in daylight conditions and enable photopic vision, as opposed to rod cells, which are active in dim light and enable scotopic vision. Most v ...
receptors tuned to different frequencies of light. An important difference, though, is that the odorant has to be able to become resident in the receptor for a response to be generated. The time an odorant resides in a receptor depends on how strongly it binds, which in turn determines the strength of the response; the odor intensity is thus governed by a similar mechanism to the "lock and key" model.
For a pure vibrational theory, the differing odors of enantiomers, which possess identical vibrations, cannot be explained. However, once the link between receptor response and duration of the residence of the odorant in the receptor is recognised, differences in odor between enantiomers can be understood: molecules with different handedness may spend different amounts of time in a given receptor, and so initiate responses of different intensities.
Seeing as there are some aroma molecules of different shapes that smell the same (eg. benzaldehyde, that gives the same scent to both almonds and/or cyanide), the shape "lock and key" model is not quite sufficient to explain what is going on. Experiments with olfaction, taking quantum mechanics into consideration, suggest that ultimately both theories might work in harmony - first the scent molecules need to fit, as in the
docking theory of olfaction model, but then the molecular vibrations of the chemical/atom bonds take over. So in essence your sense of smell could be much more like your sense of hearing, where your nose could be 'listening' to the acoustic/vibrational bonds of aroma molecules.
Some studies support vibration theory while others challenge its findings.
Major proponents and history
The theory was first proposed by Malcolm Dyson in 1928 and expanded by Robert H. Wright in 1954, after which it was largely abandoned in favor of the competing shape theory. A 1996 paper by
Luca Turin revived the theory by proposing a mechanism, speculating that the
G-protein-coupled receptors discovered by
Linda Buck and
Richard Axel
Richard Axel (born July 2, 1946) is an American molecular biologist and university professor in the Department of Neuroscience at Columbia University and investigator at the Howard Hughes Medical Institute. His work on the olfactory system won h ...
were actually measuring molecular vibrations using inelastic electron tunneling as Turin claimed, rather than responding to molecular keys fitting molecular locks, working by shape alone.
In 2007 a ''
Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. The journal is considered one of the most prestigious in the field of physics ...
'' paper by
Marshall Stoneham and colleagues at
University College London
University College London (Trade name, branded as UCL) is a Public university, public research university in London, England. It is a Member institutions of the University of London, member institution of the Federal university, federal Uni ...
and
Imperial College London
Imperial College London, also known as Imperial, is a Public university, public research university in London, England. Its history began with Prince Albert of Saxe-Coburg and Gotha, Prince Albert, husband of Queen Victoria, who envisioned a Al ...
showed that Turin's proposed mechanism was consistent with known physics and coined the expression "swipe card model" to describe it.
A
PNAS
''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of S ...
paper in 2011 by Turin, Efthimios Skoulakis, and colleagues at
MIT
The Massachusetts Institute of Technology (MIT) is a private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of modern technology and sc ...
and the
Alexander Fleming Biomedical Sciences Research Center reported fly behavioral experiments consistent with a vibrational theory of smell. The theory remains controversial.
Support
Isotope effects
A major prediction of Turin's theory is the
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
effect: that the normal and
deuterated versions of a compound should smell different, although they have the same shape. A 2001 study by Haffenden ''et al.'' showed humans able to distinguish
benzaldehyde
Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful.
It is a colorless liquid with a characteristic almond-li ...
from its deuterated version.
However, this study has been criticized for lacking
double-blind
In a blind or blinded experiment, information which may influence the participants of the experiment is withheld until after the experiment is complete. Good blinding can reduce or eliminate experimental biases that arise from a participants' expec ...
controls to eliminate bias and because it used an anomalous version of the
duo-trio test.
In another study, tests with animals have shown fish and insects able to distinguish isotopes by smell.
Deuteration changes the heats of adsorption and the boiling and freezing points of molecules (boiling points: 100.0 °C for H
2O vs. 101.42 °C for D
2O; melting points: 0.0 °C for H
2O, 3.82 °C for D
2O), p''K''
a (i.e.,
dissociation constant
In chemistry, biochemistry, and pharmacology, a dissociation constant (''K''D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex ...
: 9.71×10
−15 for H
2O vs. 1.95×10
−15 for D
2O, cf.
Heavy water
Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
) and the strength of hydrogen bonding. Such
isotope effects are exceedingly common, and so it is well known that deuterium substitution will indeed change the binding constants of molecules to protein receptors. Any binding interaction of an odorant molecule with an olfactory receptor will therefore be likely to show some isotope effect upon deuteration, and the observation of an isotope effect in no way argues exclusively for a vibrational theory of olfaction.
A study published in 2011 by Franco, Turin, Mershin and Skoulakis shows both that flies can smell deuterium, and that to flies, a carbon-deuterium bond smells like a
nitrile
In organic chemistry, a nitrile is any organic compound that has a functional group. The name of the compound is composed of a base, which includes the carbon of the , suffixed with "nitrile", so for example is called " propionitrile" (or pr ...
, which has a similar vibration. The study reports that
drosophila melanogaster
''Drosophila melanogaster'' is a species of fly (an insect of the Order (biology), order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly" ...
(fruit fly), which is ordinarily attracted to
acetophenone, spontaneously dislikes deuterated acetophenone. This dislike increases with the number of deuteriums. (Flies genetically altered to lack smell receptors could not tell the difference.) Flies could also be trained by electric shocks either to avoid the deuterated molecule or to prefer it to the normal one. When these trained flies were then presented with a completely new and unrelated choice of normal vs. deuterated odorants, they avoided or preferred deuterium as with the previous pair. This suggested that flies were able to smell deuterium regardless of the rest of the molecule. To determine whether this deuterium smell was actually due to vibrations of the carbon-deuterium (C-D) bond or to some unforeseen effect of isotopes, the researchers looked to nitriles, which have a similar vibration to the C-D bond. Flies trained to avoid deuterium and asked to choose between a nitrile and its non-nitrile counterpart did avoid the nitrile, lending support to the idea that the flies are smelling vibrations.
[ Further isotope smell studies are under way in fruit flies and dogs.][
]
Explaining differences in stereoisomer scents
Carvone presented a perplexing situation to vibration theory. Carvone has two isomer
In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
s, which have identical vibrations, yet one smells like mint and the other like caraway
Caraway, also known as meridian fennel and Persian cumin (''Carum carvi''), is a biennial plant in the family Apiaceae, native to western Asia, Europe, and North Africa.
Etymology
The etymology of "caraway" is unclear. Caraway has been ...
(for which the compound is named).
An experiment by Turin filmed by the 1995 BBC Horizon documentary "A Code in the Nose" consisted of mixing the mint isomer with butanone, on the theory that the shape of the G-protein-coupled receptor prevented the carbonyl group
In organic chemistry, a carbonyl group is a functional group with the formula , composed of a carbon atom double-bonded to an oxygen atom, and it is divalent at the C atom. It is common to several classes of organic compounds (such as aldehydes ...
in the mint isomer from being detected by the "biological spectroscope". The experiment succeeded with the trained perfumers used as subjects, who perceived that a mixture of 60% butanone and 40% mint carvone smelled like caraway.
The sulfurous smell of boranes
According to Turin's original paper in the journal ''Chemical Senses'', the well documented smell of borane compounds is sulfurous, though these molecules contain no sulfur
Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
. He proposes to explain this by the similarity in frequency between the vibration of the B-H bond and the S-H bond. However, it has been pointed out that for ''o''-carborane, which has a very strong B−H stretch at 2575 cm−1, the "onion-like odor of crude commercial ''o''-carborane is replaced by a pleasant camphoraceous odor on careful purification, reflecting the method for commercial preparation of ''o''-carborane from reactions promoted by onion-smelling diethyl sulfide, which is removed on purification."
Consistency with physics
Biophysical simulations published in ''Physical Review Letters'' in 2006 suggest that Turin's proposal is viable from a physics standpoint. However, Block et al. in their 2015 paper in ''Proceedings of the National Academy of Sciences
''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of Scie ...
'' indicate that their theoretical analysis shows that "the proposed electron transfer
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions.
Electrochemical processes are ET reactio ...
mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of nonodorant molecular vibrational modes".[
]
Correlating odor to vibration
A 2004 paper published in the journal ''Organic Biomolecular Chemistry'' by Takane and Mitchell shows that odor descriptions in the olfaction literature correlate with EVA descriptors, which loosely correspond to the vibrational spectrum, better than with descriptors based on the two dimensional connectivity of the molecule. The study did not consider molecular shape.
Lack of antagonists
Turin points out that traditional lock-and-key receptor interactions deal with agonist
An agonist is a chemical that activates a Receptor (biochemistry), receptor to produce a biological response. Receptors are Cell (biology), cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an R ...
s, which increase the receptor's time spent in the active state, and antagonists
An antagonist is a character in a story who is presented as the main enemy or rival of the protagonist and is often depicted as a villain.[ligand
In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...](_bla ...<br></span></div>, which increase the time spent in the inactive state. In other words, some <div class=)
s tend to turn the receptor on and some tend to turn it off. As an argument against the traditional lock-and-key theory of smell, very few olfactory antagonists have been found.
In 2004, a Japanese research group published that an oxidation product of isoeugenol is able to antagonize, or prevent, mice olfactory receptor response to isoeugenol.
Additional challenges to the docking theory of olfaction
*Similarly shaped molecules with different molecular vibrations have different smells (metallocene
A metallocene is a compound typically consisting of two cyclopentadienyl anions (, abbreviated Cp) bound to a metallic element, metal center (M) in the oxidation state II, with the resulting general formula Closely related to the metallocenes are ...
experiment and deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
replacement of molecular hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
). However this challenge is contrary to the results obtained with silicon analogues of bourgeonal and lilial, which despite their differences in molecular vibrations have similar smells and similarly activate the most responsive human receptor, hOR17-4, and with studies showing that the human musk receptor OR5AN1 responds identically to deuterated and non-deuterated musks.[ In the ]metallocene
A metallocene is a compound typically consisting of two cyclopentadienyl anions (, abbreviated Cp) bound to a metallic element, metal center (M) in the oxidation state II, with the resulting general formula Closely related to the metallocenes are ...
experiment, Turin observes that while ferrocene
Ferrocene is an organometallic chemistry, organometallic compound with the formula . The molecule is a Cyclopentadienyl complex, complex consisting of two Cyclopentadienyl anion, cyclopentadienyl rings sandwiching a central iron atom. It is an o ...
and nickelocene have nearly the same molecular sandwich structures, they possess distinct odors. He suggests that "because of the change in size and mass, different metal atoms give different frequencies for those vibrations that involve the metal atoms," an observation which is compatible with the vibration theory. However it has been noted that, in contrast to ferrocene, nickelocene rapidly decomposes in air and the cycloalkene odor observed for nickelocene, but not for ferrocene, could simply reflect decomposition of nickelocene giving trace amounts of hydrocarbons such as cyclopentadiene.
*Differently shaped molecules with similar molecular vibrations have similar smells (replacement of carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
double bonds by sulfur
Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
atoms and the disparate shaped amber
Amber is fossilized tree resin. Examples of it have been appreciated for its color and natural beauty since the Neolithic times, and worked as a gemstone since antiquity."Amber" (2004). In Maxine N. Lurie and Marc Mappen (eds.) ''Encyclopedia ...
odorants)
*Hiding functional group
In organic chemistry, a functional group is any substituent or moiety (chemistry), moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions r ...
s does not hide the group's characteristic odor. However this is not always the case, since ''ortho''-substituted arylisonitriles and thiophenols have far less offensive odors than the parent compounds.
Challenges
Three predictions by Luca Turin on the nature of smell, using concepts of vibration theory, were addressed by experimental tests published in Nature Neuroscience in 2004 by Vosshall and Keller.[ The study failed to support the prediction that isotopes should smell different, with untrained human subjects unable to distinguish acetophenone from its deuterated counterpart.] This study also pointed to experimental design flaws in the earlier study by Haffenden. In addition, Turin's description of the odor of long-chain aldehydes as alternately (1) dominantly waxy and faintly citrus and (2) dominantly citrus and faintly waxy was not supported by tests on untrained subjects, despite anecdotal support from fragrance industry professionals who work regularly with these materials. Vosshall and Keller also presented a mixture of guaiacol and benzaldehyde
Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful.
It is a colorless liquid with a characteristic almond-li ...
to subjects, to test Turin's theory that the mixture should smell of vanillin. Vosshall and Keller's data did not support Turin's prediction. However, Vosshall says these tests do not disprove the vibration theory.
In response to the 2011 PNAS study on flies, Vosshall acknowledged that flies could smell isotopes but called the conclusion that smell was based on vibrations an "overinterpretation" and expressed skepticism about using flies to test a mechanism originally ascribed to human receptors. For the theory to be confirmed, Vosshall stated there must be further studies on mammalian receptors. Bill Hansson, an insect olfaction
Insect olfaction refers to the function of chemical receptors that enable insects to detect and identify Volatile organic compound, volatile compounds for foraging, predator avoidance, finding mating partners (via pheromones) and locating oviposit ...
specialist, raised the question of whether deuterium could affect hydrogen bonds between the odorant and receptor.
In 2013, Turin and coworkers confirmed Vosshall and Keller's experiments showing that even trained human subjects were unable to distinguish acetophenone from its deuterated counterpart. At the same time Turin and coworkers reported that human volunteers were able to distinguish cyclopentadecanone from its fully deuterated analog. To account for the different results seen with acetophenone and cyclopentadecanone, Turin and coworkers assert that "there must be many C-H bonds before they are detectable by smell. In contrast to acetophenone which contains only 8 hydrogens, cyclopentadecanone has 28. This results in more than 3 times the number of vibrational modes involving hydrogens than in acetophenone, and this is likely essential for detecting the difference between isotopomers." Turin and coworkers provide no quantum mechanical justification for this latter assertion. Note that the correct term for compounds differing in the number of isotopic substitutions is isotopologue; isotopomers differ only in the position of the substitutions.
Vosshall, in commenting on Turin's work, notes that "the olfactory membranes are loaded with enzymes that can metabolise odorants, changing their chemical identity and perceived odour. Deuterated molecules would be poor substrates for such enzymes, leading to a chemical difference in what the subjects are testing. Ultimately, any attempt to prove the vibrational theory of olfaction should concentrate on actual mechanisms at the level of the receptor, not on indirect psychophysical testing." Richard Axel
Richard Axel (born July 2, 1946) is an American molecular biologist and university professor in the Department of Neuroscience at Columbia University and investigator at the Howard Hughes Medical Institute. His work on the olfactory system won h ...
co-recipient of the 2004 Nobel prize for physiology for his work on olfaction, expresses a similar sentiment, indicating that Turin's work "would not resolve the debate – only a microscopic look at the receptors in the nose would finally show what is at work. Until somebody really sits down and seriously addresses the mechanism and not inferences from the mechanism... it doesn't seem a useful endeavour to use behavioural responses as an argument".
In response to the 2013 paper on cyclopentadecanone,[ Block et al.][ report that the human musk-recognizing receptor, OR5AN1, identified using a heterologous ]olfactory receptor
Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
expression system and robustly responding to cyclopentadecanone and muscone (which has 30 hydrogens), fails to distinguish isotopologues of these compounds in vitro. Furthermore, the mouse (methylthio)methanethiol-recognizing receptor, MOR244-3, as well as other selected human and mouse olfactory receptor
Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s, responded similarly to normal, deuterated, and carbon-13 isotopologues of their respective ligands, paralleling results found with the musk receptor OR5AN1. Based on these findings, the authors conclude that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other olfactory receptor
Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s examined. Additionally, theoretical analysis by the authors shows that the proposed electron transfer
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions.
Electrochemical processes are ET reactio ...
mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of nonodorant molecular vibrational modes. The authors conclude: "These and other concerns about electron transfer
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions.
Electrochemical processes are ET reactio ...
at olfactory receptor
Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s, together with our extensive experimental data, argue against the plausibility of the vibration theory."
In commenting on this work, Vosshall writes "In PNAS, Block et al.... shift the "shape vs. vibration" debate from olfactory psychophysics to the biophysics of the ORs themselves. The authors mount a sophisticated multidisciplinary attack on the central tenets of the vibration theory using synthetic organic chemistry, heterologous expression of olfactory receptor
Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
s, and theoretical considerations to find no evidence to support the vibration theory of smell."[ While ]Turin
Turin ( , ; ; , then ) is a city and an important business and cultural centre in northern Italy. It is the capital city of Piedmont and of the Metropolitan City of Turin, and was the first Italian capital from 1861 to 1865. The city is main ...
comments that Block used "cells in a dish rather than within whole organisms" and that "expressing an olfactory receptor
Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants (for example, compounds that have an odor) which give ...
in human embryonic kidney cells doesn't adequately reconstitute the complex nature of olfaction
The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste.
In humans, ...
...", Vosshall responds "Embryonic kidney cells are not identical to the cells in the nose ... but if you are looking at receptors, it's the best system in the world." In a Letter to the Editor of PNAS, Turin et al. raise concerns about Block et al.[ and Block et al. respond.
Recently, Saberi and Allaei have suggested that a functional relationship exists between molecular volume and the olfactory neural response. The molecular volume is an important factor, but it is not the only factor that determines the response of ORNs. The binding affinity of an odorant-receptor pair is affected by their relative sizes. The maximum affinity can be attained when the molecular volume of an odorant matches the volume of the binding pocket.] A recent study describes the responses of primary olfactory neurons in tissue culture to isotopes and finds that a small fraction of the population (<1%) clearly discriminates between isotopes, some even giving an all-or-or -none response to H or D isotopologues of octanal. The authors attribute this to differences in hydrophobicity between normal and deuterated odorants.
See also
* Odotope theory
* Docking theory of olfaction
*Quantum biology
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. An understanding of fundamental quantum interactions is importan ...
References
{{reflist, 30em
Olfactory system
Quantum biology
Theories