Vanishing Function
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a zero (also sometimes called a root) of a real-,
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
-, or generally
vector-valued function A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could ...
f, is a member x of the
domain A domain is a geographic area controlled by a single person or organization. Domain may also refer to: Law and human geography * Demesne, in English common law and other Medieval European contexts, lands directly managed by their holder rather ...
of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Solu ...
to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
is a zero of the corresponding
polynomial function In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative int ...
. The
fundamental theorem of algebra The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant polynomial, constant single-variable polynomial with Complex number, complex coefficients has at least one comp ...
shows that any non-zero
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an
algebraically closed extension In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra h ...
) counted with their
multiplicities In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multipl ...
. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real numbers, then its zeros are the x-coordinates of the points where its
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discret ...
meets the ''x''-axis. An alternative name for such a point (x,0) in this context is an x-intercept.


Solution of an equation

Every
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
in the
unknown Unknown or The Unknown may refer to: Film and television Film * The Unknown (1915 comedy film), ''The Unknown'' (1915 comedy film), Australian silent film * The Unknown (1915 drama film), ''The Unknown'' (1915 drama film), American silent drama ...
x may be rewritten as :f(x)=0 by regrouping all the terms in the left-hand side. It follows that the solutions of such an equation are exactly the zeros of the function f. In other words, a "zero of a function" is precisely a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.


Polynomial roots

Every real polynomial of odd degree has an odd number of real roots (counting
multiplicities In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multipl ...
); likewise, a real polynomial of even degree must have an even number of real roots. Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none. This principle can be proven by reference to the
intermediate value theorem In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two imp ...
: since polynomial functions are
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
, the function value must cross zero, in the process of changing from negative to positive or vice versa (which always happens for odd functions).


Fundamental theorem of algebra

The fundamental theorem of algebra states that every polynomial of degree n has n complex roots, counted with their multiplicities. The non-real roots of polynomials with real coefficients come in conjugate pairs.
Vieta's formulas In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (1540-1603), more commonly referred to by the Latinised form of his name, "Franciscus Vieta." Basi ...
relate the coefficients of a polynomial to sums and products of its roots.


Computing roots

There are many methods for computing accurate
approximation An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ...
s of roots of functions, the best being
Newton's method In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a ...
, see
Root-finding algorithm In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function is a number such that . As, generally, the zeros of a function cannot be computed exactly nor ...
. For
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s, there are specialized algorithms that are more efficient and may provide all roots or all real roots; see
Polynomial root-finding Finding the roots of polynomials is a long-standing problem that has been extensively studied throughout the history and substantially influenced the development of mathematics. It involves determining either a numerical approximation or a close ...
and
Real-root isolation In mathematics, and, more specifically in numerical analysis and computer algebra, real-root isolation of a polynomial consist of producing disjoint intervals of the real line, which contain each one (and only one) real root of the polynomial, and ...
. Some polynomial, including all those of degree no greater than 4, can have all their roots expressed algebraically in terms of their coefficients; see
Solution in radicals A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of ...
.


Zero set

In various areas of mathematics, the zero set of a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
is the set of all its zeros. More precisely, if f:X\to\mathbb is a
real-valued function In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real ...
(or, more generally, a function taking values in some
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structu ...
), its zero set is f^(0), the
inverse image In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each ...
of \ in X. Under the same hypothesis on the
codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
of the function, a
level set In mathematics, a level set of a real-valued function of real variables is a set where the function takes on a given constant value , that is: : L_c(f) = \left\~. When the number of independent variables is two, a level set is call ...
of a function f is the zero set of the function f-c for some c in the codomain of f. The zero set of a
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
is also known as its
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learnin ...
. The cozero set of the function f:X\to\mathbb is the
complement Complement may refer to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class collections into complementary sets * Complementary color, in the visu ...
of the zero set of f (i.e., the subset of X on which f is nonzero).


Applications

In
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, the first definition of an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
is through zero sets. Specifically, an
affine algebraic set In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
is the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of the zero sets of several polynomials, in a
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
k\left _1,\ldots,x_n\right/math> over a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
. In this context, a zero set is sometimes called a ''zero locus''. In
analysis Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
and
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, any
closed subset In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
of \mathbb^n is the zero set of a
smooth function In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; t ...
defined on all of \mathbb^n. This extends to any
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
as a corollary of
paracompactness In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal ...
. In
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, zero sets are frequently used to define
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s. An important special case is the case that f is a
smooth function In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; t ...
from \mathbb^p to \mathbb^n. If zero is a
regular value In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. It is a basic concept in differential topology, dual to that of an immersion. Definition Let ''M'' and ''N'' be ...
of f, then the zero set of f is a smooth manifold of dimension m=p-n by the regular value theorem. For example, the unit m-
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
in \mathbb^ is the zero set of the real-valued function f(x)=\Vert x \Vert^2-1.


See also

*
Root-finding algorithm In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function is a number such that . As, generally, the zeros of a function cannot be computed exactly nor ...
* Bolzano's theorem, a continuous function that takes opposite signs at the end points of an interval has at least a zero in the interval. *
Gauss–Lucas theorem In complex analysis, a branch of mathematics, the Gauss–Lucas theorem gives a geometry, geometric relation between the root of a function, roots of a polynomial and the roots of its derivative . The set of roots of a real or complex polynomial ...
, the complex zeros of the derivative of a polynomial lie inside the convex hull of the roots of the polynomial. *
Marden's theorem In mathematics, Marden's theorem, named after Morris Marden but proved about 100 years earlier by Jörg Siebeck, gives a geometric relationship between the zeroes of a third-degree polynomial with complex coefficients and the zeroes of its deriva ...
, a refinement of Gauss–Lucas theorem for polynomials of degree three *
Sendov's conjecture In mathematics, Sendov's conjecture, sometimes also called Ilieff's conjecture, concerns the relationship between the locations of roots and critical points of a polynomial function of a complex variable. It is named after Blagovest Sendov. Th ...
, a conjectured refinement of Gauss-Lucas theorem * zero at infinity *
Zero crossing A zero-crossing is a point where the sign of a mathematical function changes (e.g. from positive to negative), represented by an intercept of the axis (zero value) in the graph of the function. It is a commonly used term in electronics, mathema ...
, property of the graph of a function near a zero *
Zeros and poles In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non- removable singularity of such a function (see essential singularity). T ...
of holomorphic functions


References


Further reading

* {{MathWorld , title=Root , urlname=Root Elementary mathematics Functions and mappings 0 (number)