Polynomial Root-finding
   HOME





Polynomial Root-finding
Finding the roots of polynomials is a long-standing problem that has been extensively studied throughout the history and substantially influenced the development of mathematics. It involves determining either a numerical approximation or a closed-form expression of the roots of a univariate polynomial, i.e., determining approximate or closed form solutions of x in the equation a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n = 0 where a_i are either real or complex numbers. Efforts to understand and solve polynomial equations led to the development of important mathematical concepts, including irrational and complex numbers, as well as foundational structures in modern algebra such as fields, rings, and groups. Despite being historically important, finding the roots of higher degree polynomials no longer play a central role in mathematics and computational mathematics, with one major exception in computer algebra. Overview Closed-form formulas Closed-form formulas for polyno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Root
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gerolamo Cardano
Gerolamo Cardano (; also Girolamo or Geronimo; ; ; 24 September 1501– 21 September 1576) was an Italian polymath whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, astronomer, philosopher, music theorist, writer, and gambler. He became one of the most influential mathematicians of the Renaissance and one of the key figures in the foundation of probability; he introduced the binomial coefficients and the binomial theorem in the Western world. He wrote more than 200 works on science. Cardano partially invented and described several mechanical devices including the combination lock, the gimbal consisting of three concentric rings allowing a supported compass or gyroscope to rotate freely, and the Cardan shaft with universal joints, which allows the transmission of rotary motion at various angles and is used in vehicles to this day. He made significant contributions to hypocycloids - published in ''De prop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eisenstein Series
Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms. Eisenstein series for the modular group Let be a complex number with strictly positive imaginary part. Define the holomorphic Eisenstein series of weight , where is an integer, by the following series: :G_(\tau) = \sum_ \frac. This series absolutely converges to a holomorphic function of in the upper half-plane and its Fourier expansion given below shows that it extends to a holomorphic function at . It is a remarkable fact that the Eisenstein series is a modular form. Indeed, the key property is its -covariance. Explicitly if and then :G_ \left( \frac \right) = (c\tau +d)^ G_(\tau) Note that is necessary such that the series converges absolutely, whereas needs to be even otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalan Number
The Catalan numbers are a sequence of natural numbers that occur in various Enumeration, counting problems, often involving recursion, recursively defined objects. They are named after Eugène Charles Catalan, Eugène Catalan, though they were previously discovered in the 1730s by Minggatu. The -th Catalan number can be expressed directly in terms of the central binomial coefficients by :C_n = \frac = \frac \qquad\textn\ge 0. The first Catalan numbers for are : . Properties An alternative expression for is :C_n = - for n\ge 0\,, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a #Second proof, proof of the correctness of the formula. Another alternative expression is :C_n = \frac \,, which can be directly interpreted in terms of the cycle lemma; see below. The Catalan numbers satisfy the recurr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Formal Power Series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, of the form \sum_^\infty a_nx^n=a_0+a_1x+ a_2x^2+\cdots, where the a_n, called ''coefficients'', are numbers or, more generally, elements of some ring, and the x^n are formal powers of the symbol x that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of terms is allowed to be infinite, and differ from usual power series by the absence of convergence requirements, which implies that a power series may not represent a function of its variable. Formal power series are in one to one correspondence with their sequences of coefficients, but the two concepts must not be confused, sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galois Theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand. Galois introduced the subject for studying root of a function, roots of polynomials. This allowed him to characterize the polynomial equations that are solvable by radicals in terms of properties of the permutation group of their roots—an equation is by definition ''solvable by radicals'' if its roots may be expressed by a formula involving only integers, nth root, th roots, and the four basic arithmetic operations. This widely generalizes the Abel–Ruffini theorem, which asserts that a general polynomial of degree at least five cannot be solved by radicals. Galois theory has been used to solve classic problems including showing that two problems of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Niels Henrik Abel
Niels Henrik Abel ( , ; 5 August 1802 – 6 April 1829) was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solving the general quintic equation in radicals. This question was one of the outstanding open problems of his day, and had been unresolved for over 250 years. He was also an innovator in the field of elliptic functions and the discoverer of Abelian functions. He made his discoveries while living in poverty and died at the age of 26 from tuberculosis. Most of his work was done in six or seven years of his working life. Regarding Abel, the French mathematician Charles Hermite said: "Abel has left mathematicians enough to keep them busy for five hundred years." Another French mathematician, Adrien-Marie Legendre, said: "What a head the young Norwegian has!" Life Early life Niels Henrik Abel was born prematurely in Nedstrand, Norway, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Insolvability Of The Quintic
In mathematics, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other words, a quintic function is defined by a polynomial of degree five. Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function. Setting and assuming produces a quintic equation of the form: :ax^5+bx^4+cx^3+dx^2+ex+f=0.\, Solving quintic equations in terms of radicals (''n''th roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem. Finding roots of a quintic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Joseph-Louis Lagrange
Joseph-Louis Lagrange (born Giuseppe Luigi LagrangiaJoseph-Louis Lagrange, comte de l’Empire
''Encyclopædia Britannica''
or Giuseppe Ludovico De la Grange Tournier; 25 January 1736 – 10 April 1813), also reported as Giuseppe Luigi Lagrange or Lagrangia, was an Italian and naturalized French mathematician, physicist and astronomer. He made significant contributions to the fields of mathematical analysis, analysis, number theory, and both classical mechanics, classical and celestial mechanics. In 1766, on the recommendation of Leonhard Euler and Jean le Rond d'Alembert, d'Alembert, Lagrange succeeded Euler as the director of mathematics at the Prussian Academy of Sciences in Berlin, Prussia, where he stayed for over twenty y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

René Descartes
René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramount to his method of inquiry, and he connected the previously separate fields of geometry and algebra into analytic geometry. Descartes spent much of his working life in the Dutch Republic, initially serving the Dutch States Army, and later becoming a central intellectual of the Dutch Golden Age. Although he served a Dutch Reformed Church, Protestant state and was later counted as a Deism, deist by critics, Descartes was Roman Catholicism, Roman Catholic. Many elements of Descartes's philosophy have precedents in late Aristotelianism, the Neostoicism, revived Stoicism of the 16th century, or in earlier philosophers like Augustine of Hippo, Augustine. In his natural philosophy, he differed from the Scholasticism, schools on two major point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


François Viète
François Viète (; 1540 – 23 February 1603), known in Latin as Franciscus Vieta, was a French people, French mathematician whose work on new algebra was an important step towards modern algebra, due to his innovative use of letters as parameters in equations. He was a lawyer by trade, and served as a Conseil du Roi, privy councillor to both Henry III of France, Henry III and Henry IV of France, Henry IV of France. Biography Early life and education Viète was born at Fontenay-le-Comte in present-day Vendée. His grandfather was a merchant from La Rochelle. His father, Etienne Viète, was an attorney in Fontenay-le-Comte and a notary in Le Busseau. His mother was the aunt of Barnabé Brisson, a magistrate and the first president of parliament during the ascendancy of the Ligue, Catholic League of France. Viète went to a Franciscan school and in 1558 studied law at Poitiers, graduating as a Bachelor of Laws in 1559. A year later, he began his career as an attorney in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rafael Bombelli
Rafael Bombelli (baptised on 20 January 1526; died 1572) was an Italian mathematician. Born in Bologna, he is the author of a treatise on algebra and is a central figure in the understanding of imaginary numbers. He was the one who finally managed to address the problem with imaginary numbers. In his 1572 book, ''L'Algebra'', Bombelli solved equations using the method of del Ferro/ Tartaglia. He introduced the rhetoric that preceded the representative symbols +''i'' and -''i'' and described how they both worked. Life Rafael Bombelli was baptised on 20 January 1526 in Bologna, Papal States. He was born to Antonio Mazzoli, a wool merchant, and Diamante Scudieri, a tailor's daughter. The Mazzoli family was once quite powerful in Bologna. When Pope Julius II came to power, in 1506, he exiled the ruling family, the Bentivoglios. The Bentivoglio family attempted to retake Bologna in 1508, but failed. Rafael's grandfather participated in the coup attempt, and was captured and exec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]