Target Selection
   HOME

TheInfoList



OR:

Target selection is the process by which
axon An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
s (nerve fibres) selectively target other cells for synapse formation. Synapses are structures which enable electrical or chemical signals to pass between nerves. While the mechanisms governing target specificity remain incompletely understood, it has been shown in many organisms that a combination of genetic and activity-based mechanisms govern initial target selection and refinement. The process of target selection has multiple steps that include axon pathfinding when neurons extend processes to specific regions, cellular target selection when neurons choose appropriate partners in a target region from a multitude of potential partners, and subcellular target selection where axons often target particular regions of a partner neuron.


Description

As bundled axons finish navigating through various neural circuits during
neural development The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The field ...
, the
growth cone A growth cone is a large actin-supported extension of a developing or regenerating neurite seeking its synaptic target. It is the growth cone that drives axon growth. Their existence was originally proposed by Spanish histologist Santiago ...
s must selectively target with which cells it will
synapse In the nervous system, a synapse is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending o ...
. This can be particularly well observed in the
visual The visual system is the physiological basis of visual perception (the ability to detect and process light). The system detects, transduces and interprets information concerning light within the visible range to construct an image and buil ...
and
olfactory The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, it ...
systems of
organism An organism is any life, living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have be ...
s. In order to develop into a properly functioning
nervous system In biology, the nervous system is the complex system, highly complex part of an animal that coordinates its behavior, actions and sense, sensory information by transmitting action potential, signals to and from different parts of its body. Th ...
, there must be an extremely high degree of accuracy in which cell the growth cone forms neural connections. Although the target cell selection must be highly accurate, the degree of specificity that the neural connectivity achieves varies based on the neuronal circuitry system. The target selection process of an axon to develop synaptic connections with specific cells can be broken down into multiple stages that are not necessarily confined to exact chronological order. The stages of targeting include: * region specification * target cell specification * subcellular specification * synaptic refinement


Region specification

The first stage in target selection is specification of target region, a process known as axon pathfinding. Growing neurites follow gradients of cell surface molecules that serve as chemoattractants and repellents to the growth cone. This perspective is an evolution of the chemoaffinity hypothesis posited by the neurobiologist
Roger Wolcott Sperry Roger Wolcott Sperry (August 20, 1913 – April 17, 1994) was an American neuropsychologist, neurobiologist, cognitive neuroscientist, and Nobel laureate who, together with David H. Hubel and Torsten Nils Wiesel, won the 1981 Nobel Prize in M ...
in the 1960s. Sperry studied how the neurons in the visual systems of
amphibian Amphibians are ectothermic, anamniote, anamniotic, tetrapod, four-limbed vertebrate animals that constitute the class (biology), class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all Tetrapod, tetrapods, but excl ...
s and
goldfish The goldfish (''Carassius auratus'') is a freshwater fish in the family Cyprinidae of the order Cypriniformes. It is commonly kept as a pet in indoor aquariums, and is one of the most popular aquarium fish. Goldfish released into the w ...
form
topographic maps In modern mapping, a topographic map or topographic sheet is a type of map characterized by large- scale detail and quantitative representation of relief features, usually using contour lines (connecting points of equal elevation), but historic ...
in the brain, noting that if the
optic nerve In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual system, visual information from the retina to the brain. In humans, the optic nerve i ...
is crushed and allowed to regenerate, the axons will trace back the same patterns of connections. Sperry hypothesized that the target cells carried "identification tags" that would guide the growing axon, which we now know as recognition molecules that bind the growth cone along a gradient. Neurons in sensory systems like the visual, auditory, or olfactory cortex grow into topographic maps such that neighboring neurons in the periphery correspond to adjacent target locations in the central nervous system. For example, neurons nearby on the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
will project to nearby cortical cells, creating a so-called retinotopic map. This cortical organization allows organisms to more easily decode
stimuli A stimulus is something that causes a physiological response. It may refer to: *Stimulation **Stimulus (physiology), something external that influences an activity **Stimulus (psychology), a concept in behaviorism and perception *Stimulus (economi ...
. The mechanisms governing region specification have been well studied in numerous systems. In Drosophila, numerous axon guidance molecules have been shown to be involved in precise regionalization of the ventral nerve cord.


Target cell specification

Once a growing neuron has entered the target area, they must locate and enter the appropriate target cell with which to synapse. This is accomplished through sequential signaling of attractive and repulsive cues, largely neurotrophins. The axon grows along its chemoattractant gradient until approaching the target cell, when its growth is slowed down by a sudden drop in the concentration of chemoattractant. This serves as a signal to enter the target cell. As the growth cone slows down, branches begin to form through one of two modalities: splitting of the growth cone, or interstitial branching. Growth cone splitting results in bifurcation of the main axon and is associated with axon guidance and innervating multiple faraway targets. Conversely, interstitial branching increases axonal coverage locally to define its presynaptic territory. Most mammalian CNS branches extend interstitially. Branching can be caused by repulsive cues in the environment that cause the growth cone to pause and collapse, resulting in the formation of branches. To ensure successful innervation, inappropriate targeting must be prevented. Once the axon has reached its target area and started to slow down and branch, it can be held within the target area by a perimeter of cues repulsive to the growth cone.


Cell-to-cell interactions

Axons express patterns of cell-surface adhesion molecules that allow them to match with specific layer targets. An important family of adhesion molecules is constituted by the
cadherin Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let cells adhere to each other. Cadherins are a class of type-1 transmembrane proteins, and they depend on calcium (Ca2+) ...
s, whose different combination on targeting cells allow the traction and guidance of the forming axons. A typical example of layers with combinatorial expression of these molecules is the tectal laminae in the chick tectum, where the N-cadherin molecule is present only in those layers that receive axons form the retina.


Extracellular cues

Matrix factors and secreted cues are also very important in the formation of layered structures, and can be divided into attractive and repulsive cues, though the same factor can have both functions under varying conditions. For example,
semaphorin Semaphorins are a class of secreted and membrane proteins that were originally identified as axonal growth cone guidance molecules. They primarily act as short-range inhibitory signals and signal through multimeric receptor (biochemistry), recepto ...
is a substance with a repulsive effect that has been shown to have a fundamental role in layering between different
somatosensory The somatosensory system, or somatic sensory system is a subset of the sensory nervous system. The main functions of the somatosensory system are the perception of external stimuli, the perception of internal stimuli, and the regulation of bod ...
modalities in the spinal cord system.


Synapse formation

The molecular mechanism of synapse formation is a process composed by different stages that relies on complex
intracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
mechanisms involving both the pre- and postsynaptic cell. When the growth cone of the growing presynaptic axon makes contact with the target cell, it loses the
filopodia Filopodia (: filopodium) are slender cytoplasmic projections that extend beyond the leading edge of lamellipodia in migrating cells. Within the lamellipodium, actin ribs are known as ''microspikes'', and when they extend beyond the lamellipod ...
, while both cells start expressing adhesion molecules on their respective membranes to form
tight junction Tight junctions, also known as occluding junctions or ''zonulae occludentes'' (singular, ''zonula occludens''), are multiprotein Cell junction, junctional complexes between epithelial cells, sealing and preventing leakage of solutes and water. Th ...
s, called "puncta adherens", which are similar to an
adherens junction In cell biology, adherens junctions (or zonula adherens, intermediate junction, or "belt desmosome") are protein complexes that occur at cell–cell junctions and cell–matrix junctions in epithelial and endothelial tissues, usually more basa ...
. Different classes of adhesion molecules, like SynCAM, cadherins and
neuroligin Neuroligin (NLGN), a Transmembrane protein, type I membrane protein, is a Cell adhesion molecule, cell adhesion protein on the Chemical synapse#Structure, postsynaptic membrane that mediates the formation and maintenance of synapses betwee ...
s/
neurexin Neurexins (NRXN) are a family of presynaptic cell adhesion proteins that have roles in connecting neurons at the synapse. They are located mostly on the presynaptic membrane and contain a single transmembrane domain. The extracellular domai ...
s play an important role in synapse stabilization and enable synaptic formation. After the synapses have been stabilized, the pre- and postsynaptic cells undergo subcellular changes on each side of the synapses. Namely, there is an accumulation of the
Golgi apparatus The Golgi apparatus (), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic Cell (biology), cells. Part of the endomembrane system in the cytoplasm, it protein targeting, packages proteins ...
on the postsynaptic side, while there is an accumulation of vesicles in the presynaptic terminal. Finally at the end of synaptogenesis, there is an apposition of
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
between the cells with the formation of a
synaptic cleft Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in neuromuscular junction, muscles or glands. Chemical synapses allow neurons to form biological neural ...
. Characteristic of the postsynaptic cell is the presence of a postsynaptic density (PSD), formed by PDZ-domain-containing scaffold proteins whose function is to keep the
neurotransmitter receptor A neurotransmitter receptor (also known as a neuroreceptor) is a membrane receptor protein that is activated by a neurotransmitter. Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane, in which the ...
s clustered inside the synapse.


References

{{reflist Cell biology Neural circuitry Nervous system