
In
music theory, the syntonic comma, also known as the
chromatic
Diatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a ...
diesis, the Didymean comma, the
Ptolemaic comma, or the
diatonic
Diatonic and chromatic are terms in music theory that are most often used to characterize scales, and are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a p ...
comma is a small
comma type
interval between two
musical note
In music, a note is the representation of a musical sound.
Notes can represent the pitch and duration of a sound in musical notation. A note can also represent a pitch class.
Notes are the building blocks of much written music: discretizatio ...
s, equal to the frequency ratio 81:80 (= 1.0125) (around 21.51
cents). Two notes that differ by this interval would sound different from each other even to untrained ears,
"Sol-Fa – The Key to Temperament"
, ''BBC''. but would be close enough that they would be more likely interpreted as out-of-tune versions of the same note than as different notes. The comma is also referred to as a Didymean comma because it is the amount by which Didymus corrected the Pythagorean major third
In classical music, a third is a musical interval encompassing three staff positions (see Interval number for more details), and the major third () is a third spanning four semitones. Forte, Allen (1979). ''Tonal Harmony in Concept and P ...
(81:64, around 407.82 cents) to a just major third (5:4, around 386.31 cents).
The word "comma" came via Latin from Greek κόμμα, from earlier *κοπ-μα = "a thing cut off".
Relationships
The prime factors of the just interval 81/80 known as the syntonic comma can be separated out and reconstituted into various sequences of two or more intervals that arrive at the comma, such as 81/1 * 1/80 or (fully expanded and sorted by prime) 1/2 * 1/2 * 1/2 * 1/2 * 3/1 * 3/1 * 3/1 *3/1 * 1/5. All sequences are mathematically valid, but some of the more musical sequences people use to remember and explain the comma's composition, occurrence, and usage are listed below:
* The difference in size
Size in general is the Magnitude (mathematics), magnitude or dimensions of a thing. More specifically, ''geometrical size'' (or ''spatial size'') can refer to linear dimensions (length, width, height, diameter, perimeter), area, or volume ...
between a Pythagorean ditone ( frequency ratio 81:64, or about 407.82 cents) and a just major third (5:4, or about 386.31 cents). Namely, 81:64 ÷ 5:4 = 81:80.
* The difference between four justly tuned perfect fifth
In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.
In classical music from Western culture, a fifth is the interval from the first to the last of five ...
s, and two octave
In music, an octave ( la, octavus: eighth) or perfect octave (sometimes called the diapason) is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been refer ...
s plus a justly tuned major third
In classical music, a third is a musical interval encompassing three staff positions (see Interval number for more details), and the major third () is a third spanning four semitones. Forte, Allen (1979). ''Tonal Harmony in Concept and P ...
. A just perfect fifth has a size of 3:2 (about 701.96 cents), and four of them are equal to 81:16 (about 2807.82 cents). A just major third has a size of 5:4 (about 386.31 cents), and one of them plus two octaves (4:1 or exactly 2400 cents) is equal to 5:1 (about 2786.31 cents). The difference between these is the syntonic comma. Namely, 81:16 ÷ 5:1 = 81:80.
* The difference between one octave plus a justly tuned minor third
In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions (see: interval number). The minor third is one of two com ...
(12:5, about 1515.64 cents), and three justly tuned perfect fourths (64:27, about 1494.13 cents). Namely, 12:5 ÷ 64:27 = 81:80.
* The difference between the two kinds of major second which occur in 5-limit tuning: major tone (9:8, about 203.91 cents) and minor tone (10:9, about 182.40 cents). Namely, 9:8 ÷ 10:9 = 81:80.
* The difference between a Pythagorean major sixth
In music from Western culture, a sixth is a musical interval encompassing six note letter names or staff positions (see Interval number for more details), and the major sixth is one of two commonly occurring sixths. It is qualified as ''major' ...
(27:16, about 905.87 cents) and a justly tuned or "pure" major sixth
In music from Western culture, a sixth is a musical interval encompassing six note letter names or staff positions (see Interval number for more details), and the major sixth is one of two commonly occurring sixths. It is qualified as ''major' ...
(5:3, about 884.36 cents). Namely, 27:16 ÷ 5:3 = 81:80.[Llewelyn Southworth Lloyd (1937). ''Music and Sound'', p. 12. .]
On a piano
The piano is a stringed keyboard instrument in which the strings are struck by wooden hammers that are coated with a softer material (modern hammers are covered with dense wool felt; some early pianos used leather). It is played using a musica ...
keyboard (typically tuned with 12-tone equal temperament) a stack of four fifths (700 * 4 = 2800 cents) is exactly equal to two octaves (1200 * 2 = 2400 cents) plus a major third (400 cents). In other words, starting from a C, both combinations of intervals will end up at E. Using justly tuned octaves (2:1), fifths (3:2), and thirds (5:4), however, yields two slightly different notes. The ratio between their frequencies, as explained above, is a syntonic comma (81:80). Pythagorean tuning
Pythagorean tuning is a system of musical tuning in which the frequency ratios of all intervals are based on the ratio 3:2.Bruce Benward and Marilyn Nadine Saker (2003). ''Music: In Theory and Practice'', seventh edition, 2 vols. (Boston: M ...
uses justly tuned fifths (3:2) as well, but uses the relatively complex ratio of 81:64 for major thirds. Quarter-comma meantone uses justly tuned major thirds (5:4), but flattens each of the fifths by a quarter of a syntonic comma, relative to their just size (3:2). Other systems use different compromises. This is one of the reasons why 12-tone equal temperament is currently the preferred system for tuning most musical instruments.
Mathematically, by Størmer's theorem, 81:80 is the closest superparticular ratio possible with regular number
Regular numbers are numbers that evenly divide powers of 60 (or, equivalently, powers of 30). Equivalently, they are the numbers whose only prime divisors are 2, 3, and 5. As an example, 602 = 3600 = 48 ×&nb ...
s as numerator and denominator. A superparticular ratio is one whose numerator is 1 greater than its denominator, such as 5:4, and a regular number is one whose prime factors are limited to 2, 3, and 5. Thus, although smaller intervals can be described within 5-limit tunings, they cannot be described as superparticular ratios.
Syntonic comma in the history of music
The syntonic comma has a crucial role in the history of music. It is the amount by which some of the notes produced in Pythagorean tuning were flattened or sharpened to produce just minor and major thirds. In Pythagorean tuning, the only highly consonant intervals were the perfect fifth
In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.
In classical music from Western culture, a fifth is the interval from the first to the last of five ...
and its inversion, the perfect fourth. The Pythagorean major third
In classical music, a third is a musical interval encompassing three staff positions (see Interval number for more details), and the major third () is a third spanning four semitones. Forte, Allen (1979). ''Tonal Harmony in Concept and P ...
(81:64) and minor third
In music theory, a minor third is a musical interval that encompasses three half steps, or semitones. Staff notation represents the minor third as encompassing three staff positions (see: interval number). The minor third is one of two com ...
(32:27) were dissonant, and this prevented musicians from using triad
Triad or triade may refer to:
* a group of three
Businesses and organisations
* Triad (American fraternities), certain historic groupings of seminal college fraternities in North America
* Triad (organized crime), a Chinese transnational orga ...
s and chord
Chord may refer to:
* Chord (music), an aggregate of musical pitches sounded simultaneously
** Guitar chord a chord played on a guitar, which has a particular tuning
* Chord (geometry), a line segment joining two points on a curve
* Chord ( ...
s, forcing them for centuries to write music with relatively simple texture.
The syntonic tempering dates to Didymus the Musician Didymus the Musician (Greek: Δίδυμος) was a music theorist in Rome of the end of the 1st century BC or beginning of the 1st century AD, who combined elements of earlier theoretical approaches with an appreciation of the aspect of performance. ...
, whose tuning of the diatonic genus
In the musical system of ancient Greece, genus (Greek: γένος 'genos'' pl. γένη 'genē'' Latin: ''genus'', pl. ''genera'' "type, kind") is a term used to describe certain classes of intonations of the two movable notes within a tetracho ...
of the tetrachord
In music theory, a tetrachord ( el, τετράχορδoν; lat, tetrachordum) is a series of four notes separated by three intervals. In traditional music theory, a tetrachord always spanned the interval of a perfect fourth, a 4:3 frequency pr ...
replaced one 9:8 interval with a 10:9 interval (lesser tone
In Western culture, Western music theory, a major second (sometimes also called whole tone or a whole step) is a second spanning two semitones (). A second is a interval (music), musical interval encompassing two adjacent staff positions ( ...
), obtaining a just major third (5:4) and semitone (16:15). This was later revised by Ptolemy (swapping the two tones) in his "syntonic diatonic" scale (συντονόν διατονικός, ''syntonón diatonikós'', from συντονός + διάτονος). The term ''syntonón'' was based on Aristoxenus
Aristoxenus of Tarentum ( el, Ἀριστόξενος ὁ Ταραντῖνος; born 375, fl. 335 BC) was a Greek Peripatetic philosopher, and a pupil of Aristotle. Most of his writings, which dealt with philosophy, ethics and music, have bee ...
, and may be translated as "tense" (conventionally "intense"), referring to tightened strings (hence sharper), in contrast to μαλακόν (''malakón'', from μαλακός), translated as "relaxed" (conventional "soft"), referring to looser strings (hence flatter or "softer").
This was rediscovered in the late Middle Ages
In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire ...
, where musicians realized that by slightly tempering the pitch of some notes, the Pythagorean thirds could be made consonant
In articulatory phonetics, a consonant is a speech sound that is articulated with complete or partial closure of the vocal tract. Examples are and pronounced with the lips; and pronounced with the front of the tongue; and pronounced ...
. For instance, if the frequency of E is decreased by a syntonic comma (81:80), C-E (a major third), and E-G (a minor third) become just. Namely, C-E is narrowed to a justly intonated ratio of
:
and at the same time E-G is widened to the just ratio of
:
The drawback is that the fifths A-E and E-B, by flattening E, become almost as dissonant as the Pythagorean wolf fifth. But the fifth C-G stays consonant, since only E has been flattened (C-E * E-G = 5/4 * 6/5 = 3/2), and can be used together with C-E to produce a C- major triad (C-E-G). These experiments eventually brought to the creation of a new tuning system, known as quarter-comma meantone, in which the number of major thirds was maximized, and most minor thirds were tuned to a ratio which was very close to the just 6:5. This result was obtained by narrowing each fifth by a quarter of a syntonic comma, an amount which was considered negligible, and permitted the full development of music with complex texture, such as polyphonic music, or melody with instrumental accompaniment. Since then, other tuning systems were developed, and the syntonic comma was used as a reference value to temper the perfect fifths in an entire family of them. Namely, in the family belonging to the syntonic temperament continuum, including meantone temperaments.
Comma pump
The syntonic comma arises in '' comma pump'' (''comma drift'') sequences such as C G D A E C, when each interval from one note to the next is played with certain specific intervals in just intonation
In music, just intonation or pure intonation is the tuning of musical intervals as whole number ratios (such as 3:2 or 4:3) of frequencies. An interval tuned in this way is said to be pure, and is called a just interval. Just intervals (and ...
tuning. If we use the frequency ratio 3/2 for the perfect fifth
In music theory, a perfect fifth is the musical interval corresponding to a pair of pitches with a frequency ratio of 3:2, or very nearly so.
In classical music from Western culture, a fifth is the interval from the first to the last of five ...
s (C-G and D-A), 3/4 for the descending perfect fourths (G-D and A-E), and 4/5 for the descending major third
In classical music, a third is a musical interval encompassing three staff positions (see Interval number for more details), and the major third () is a third spanning four semitones. Forte, Allen (1979). ''Tonal Harmony in Concept and P ...
(E-C), then the sequence of intervals from one note to the next in that sequence goes 3/2, 3/4, 3/2, 3/4, 4/5. These multiply together to give
::
which is the syntonic comma (musical intervals stacked in this way are multiplied together). The "drift" is created by the combination of Pythagorean and 5-limit intervals in just intonation, and would not occur in Pythagorean tuning due to the use only of the Pythagorean major third (64/81) which would thus return the last step of the sequence to the original pitch.
So in that sequence, the second C is sharper than the first C by a syntonic comma . That sequence, or any transposition of it, is known as the comma pump. If a line of music follows that sequence, and if each of the intervals between adjacent notes is justly tuned, then every time the sequence is followed, the pitch of the piece rises by a syntonic comma (about a fifth of a semitone).
Study of the comma pump dates back at least to the sixteenth century when the Italian scientist Giovanni Battista Benedetti composed a piece of music to illustrate syntonic comma drift.
Note that a descending perfect fourth (3/4) is the same as a descending octave
In music, an octave ( la, octavus: eighth) or perfect octave (sometimes called the diapason) is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been refer ...
(1/2) followed by an ascending perfect fifth (3/2). Namely, (3/4)=(1/2)*(3/2). Similarly, a descending major third (4/5) is the same as a descending octave (1/2) followed by an ascending minor sixth
In Western classical music, a minor sixth is a musical interval encompassing six staff positions (see Interval number for more details), and is one of two commonly occurring sixths (the other one being the major sixth). It is qualified as ''min ...
(8/5). Namely, (4/5)=(1/2)*(8/5). Therefore, the above-mentioned sequence is equivalent to:
::
or, by grouping together similar intervals,
::
This means that, if all intervals are justly tuned, a syntonic comma can be obtained with a stack of four perfect fifths plus one minor sixth, followed by three descending octaves (in other words, four P5 plus one m6 minus three P8).
Notation
Moritz Hauptmann developed a method of notation used by Hermann von Helmholtz
Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Associatio ...
. Based on Pythagorean tuning, subscript numbers are then added to indicate the number of syntonic commas to lower a note by. Thus a Pythagorean scale is C D E F G A B, while a just scale is C D E1 F G A1 B1. Carl Eitz developed a similar system used by J. Murray Barbour. Superscript positive and negative numbers are added, indicating the number of syntonic commas to raise or lower from Pythagorean tuning. Thus a Pythagorean scale is C D E F G A B, while the 5-limit Ptolemaic scale is C D E−1 F G A−1 B−1.
In Helmholtz-Ellis notation, a syntonic comma is indicated with up and down arrows added to the traditional accidentals. Thus a Pythagorean scale is C D E F G A B, while the 5-limit Ptolemaic scale is C D E F G A B.
Composer Ben Johnston uses a "−" as an accidental to indicate a note is lowered by a syntonic comma, or a "+" to indicate a note is raised by a syntonic comma.[ John Fonville. "Ben Johnston's Extended Just Intonation – A Guide for Interpreters", p. 109, '']Perspectives of New Music
''Perspectives of New Music'' (PNM) is a peer-reviewed academic journal specializing in music theory and analysis. It was established in 1962 by Arthur Berger and Benjamin Boretz (who were its initial editors-in-chief).
''Perspectives'' was fir ...
'', vol. 29, no. 2 (Summer 1991), pp. 106-137. and Johnston, Ben and Gilmore, Bob (2006). "A Notation System for Extended Just Intonation" (2003), ''"Maximum clarity" and Other Writings on Music'', p. 78. . Thus a Pythagorean scale is C D E+ F G A+ B+, while the 5-limit Ptolemaic scale is C D E F G A B.
See also
* F+ (pitch)
* Holdrian comma
* Comma (music)
*Pythagorean comma
In musical tuning, the Pythagorean comma (or ditonic comma), named after the ancient mathematician and philosopher Pythagoras, is the small interval (or comma) existing in Pythagorean tuning between two enharmonically equivalent notes such as ...
References
External links
Indiana University School of Music: Piano Repair Shop: Harpsichord Tuning, Repair, and Temperaments: "What is the Syntonic Comma?"
Tonalsoft: "Syntonic-comma"
Explanation of comma drift
{{DEFAULTSORT:Syntonic Comma
5-limit tuning and intervals
Commas (music)
0081:0080