HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a singleton (also known as a unit set or one-point set) is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
with exactly one element. For example, the set \ is a singleton whose single element is 0.


Properties

Within the framework of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
, the
axiom of regularity In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every Empty set, non-empty Set (mathematics), set ''A'' contains an element that is Disjoint sets, disjoin ...
guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and \ are not the same thing, and the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
its
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In
axiomatic set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, the existence of singletons is a consequence of the
axiom of pairing In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of pairing is one of the axioms of Zermelo–Fraenkel set theory. It was introduced by as a special case of his axiom of elementary sets ...
: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same as the singleton \ (since it contains ''A'', and no other set, as an element). If ''A'' is any set and ''S'' is any singleton, then there exists precisely one function from ''A'' to ''S'', the function sending every element of ''A'' to the single element of ''S''. Thus every singleton is a
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
in the
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
. A singleton has the property that every function from it to any arbitrary set is injective. The only non-singleton set with this property is the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
. Every singleton set is an ultra prefilter. If X is a set and x \in X then the upward of \ in X, which is the set \, is a principal
ultrafilter In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
on X. Moreover, every principal ultrafilter on X is necessarily of this form. The ultrafilter lemma implies that non- principal ultrafilters exist on every
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
(these are called ). Every net valued in a singleton subset X of is an ultranet in X. The Bell number integer sequence counts the number of partitions of a set (), if singletons are excluded then the numbers are smaller ().


In category theory

Structures built on singletons often serve as
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
s or zero objects of various categories: * The statement above shows that the singleton sets are precisely the terminal objects in the category
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
s. No other sets are terminal. * Any singleton admits a unique
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
structure (both subsets are open). These singleton topological spaces are terminal objects in the category of topological spaces and
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s. No other spaces are terminal in that category. * Any singleton admits a unique group structure (the unique element serving as
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
). These singleton groups are zero objects in the category of groups and
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
s. No other groups are terminal in that category.


Definition by indicator functions

Let be a
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
defined by an
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator functio ...
b : X \to \. Then is called a ''singleton'' if and only if there is some y \in X such that for all x \in X, b(x) = (x = y).


Definition in ''Principia Mathematica''

The following definition was introduced in
Principia Mathematica The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by the mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1 ...
by Whitehead and Russell :\iotax = \hat(y = x) Df. The symbol \iotax denotes the singleton \ and \hat(y = x) denotes the class of objects identical with x aka \. This occurs as a definition in the introduction, which, in places, simplifies the argument in the main text, where it occurs as proposition 51.01 (p. 357 ibid.). The proposition is subsequently used to define the
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
1 as :1=\hat((\exists x)\alpha=\iotax) Df. That is, 1 is the class of singletons. This is definition 52.01 (p. 363 ibid.)


See also

* * * *


References

{{Set theory Basic concepts in set theory 1 (number)