Ultrafilter (set Theory)
In the mathematical field of set theory, an ultrafilter on a set (mathematics), set X is a ''maximal filter'' on the set X. In other words, it is a collection of subsets of X that satisfies the definition of a filter (set theory), filter on X and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of X that is also a filter. (In the above, by definition a filter on a set does not contain the empty set.) Equivalently, an ultrafilter on the set X can also be characterized as a filter on X with the property that for every subset A of X either A or its complement X\setminus A belongs to the ultrafilter. Ultrafilters on sets are an important special instance of Ultrafilter, ultrafilters on partially ordered sets, where the partially ordered set consists of the power set \wp(X) and the partial order is subset inclusion \,\subseteq. This article deals specifically with ultrafilters on a set and does not cover the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partially Ordered Set
In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is Reflexive relation, reflexive, antisymmetric relation, antisymmetric, and Transitive relation, transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intersection (set Theory)
In set theory, the intersection of two Set (mathematics), sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols. Definition The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Codensity Monad
In mathematics, especially in category theory, the codensity monad is a fundamental construction associating a monad to a wide class of functors. Definition The codensity monad of a functor G: D \to C is defined to be the right Kan extension of G along itself, provided that this Kan extension exists. Thus, by definition it is in particular a functor T^G : C \to C. The monad structure on T^G stems from the universal property of the right Kan extension. The codensity monad exists whenever D is a small category (has only a set, as opposed to a proper class, of morphisms) and C possesses all (small, i.e., set-indexed) limits. It also exists whenever G has a left adjoint. By the general formula computing right Kan extensions in terms of ends, the codensity monad is given by the following formula: T^G(c) = \int_ G(d)^, where C(c, G(d)) denotes the set of morphisms in C between the indicated objects and the integral denotes the end. The codensity monad therefore amounts to consid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ultrafilter Monad
In the mathematical field of set theory, an ultrafilter on a set X is a ''maximal filter'' on the set X. In other words, it is a collection of subsets of X that satisfies the definition of a filter on X and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of X that is also a filter. (In the above, by definition a filter on a set does not contain the empty set.) Equivalently, an ultrafilter on the set X can also be characterized as a filter on X with the property that for every subset A of X either A or its complement X\setminus A belongs to the ultrafilter. Ultrafilters on sets are an important special instance of ultrafilters on partially ordered sets, where the partially ordered set consists of the power set \wp(X) and the partial order is subset inclusion \,\subseteq. This article deals specifically with ultrafilters on a set and does not cover the more general notion. There are two types of ultra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monad (category Theory)
In category theory, a branch of mathematics, a monad is a triple (T, \eta, \mu) consisting of a functor ''T'' from a category to itself and two natural transformations \eta, \mu that satisfy the conditions like associativity. For example, if F, G are functors adjoint to each other, then T = G \circ F together with \eta, \mu determined by the adjoint relation is a monad. In concise terms, a monad is a monoid in the category of endofunctors of some fixed category (an endofunctor is a functor mapping a category to itself). According to John Baez, a monad can be considered at least in two ways: https://golem.ph.utexas.edu/category/2009/07/the_monads_hurt_my_head_but_no.html # A monad as a generalized monoid; this is clear since a monad is a monoid in a certain category, # A monad as a tool for studying algebraic gadgets; for example, a group can be described by a certain monad. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operato ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fréchet Filter
In mathematics, the Fréchet filter, also called the cofinite filter, on a set X is a certain collection of subsets of X (that is, it is a particular subset of the power set of X). A subset F of X belongs to the Fréchet filter if and only if the complement of F in X is finite. Any such set F is said to be , which is why it is alternatively called the ''cofinite filter'' on X. The Fréchet filter is of interest in topology, where filters originated, and relates to order and lattice theory because a set's power set is a partially ordered set under set inclusion (more specifically, it forms a lattice). The Fréchet filter is named after the French mathematician Maurice Fréchet (1878-1973), who worked in topology. Definition A subset A of a set X is said to be cofinite in X if its complement in X (that is, the set X \setminus A) is finite. If the empty set is allowed to be in a filter, the Fréchet filter on X, denoted by F is the set of all cofinite subsets of X. That is: F = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kernel (set Theory)
In set theory, the kernel of a function f (or equivalence kernel.) may be taken to be either * the equivalence relation on the function's domain that roughly expresses the idea of "equivalent as far as the function f can tell",. or * the corresponding partition of the domain. An unrelated notion is that of the kernel of a non-empty family of sets \mathcal, which by definition is the intersection of all its elements: \ker \mathcal ~=~ \bigcap_ \, B. This definition is used in the theory of filters to classify them as being free or principal. Definition For the formal definition, let f : X \to Y be a function between two sets. Elements x_1, x_2 \in X are ''equivalent'' if f\left(x_1\right) and f\left(x_2\right) are equal, that is, are the same element of Y. The kernel of f is the equivalence relation thus defined. The is \ker \mathcal ~:=~ \bigcap_ B. The kernel of \mathcal is also sometimes denoted by \cap \mathcal. The kernel of the empty set, \ker \varnothin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Filter (mathematics)
In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937. Nicolas Bourbaki, in their book '' Topologie Générale'', popularized filters as an alternative to E. H. Moore and Herman L. Smith's 1922 notion of a net; order filters generalize this notion from the specific case of a power set under inclusion to arbitrary partially ordered sets. Nevertheless, the theory of power-set filters retains interest in its own right, in part for substantial applications in topology. Motivation Fix a partially ordered set (poset) . Intuitively, a filter& ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Subset
In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique can be seen as a consequence of univers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |