HOME

TheInfoList



OR:

In mathematics, a representation theorem is a
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
that states that every abstract structure with certain properties is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to another (abstract or concrete) structure.


Examples


Algebra

*
Cayley's theorem In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group is isomorphic to a subgroup of a symmetric group. More specifically, is isomorphic to a subgroup of the symmetric group \operatorname(G) whose element ...
states that every
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to a
permutation group In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to i ...
. *
Representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
studies properties of abstract groups via their
representations ''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
as
linear transformation In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vect ...
s of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but ca ...
s. *
Stone's representation theorem In mathematics, Stone's representation theorem for Boolean algebras states that every Boolean algebra is isomorphic to a certain field of sets. The theorem is fundamental to the deeper understanding of Boolean algebra that emerged in the first ha ...
for
Boolean algebras In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a gen ...
states that every Boolean algebra is isomorphic to a
field of sets In mathematics, a field of sets is a mathematical structure consisting of a pair ( X, \mathcal ) consisting of a set X and a family \mathcal of subsets of X called an algebra over X that contains the empty set as an element, and is closed under ...
. *: A variant, Stone's representation theorem for distributive lattices, states that every
distributive lattice In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set u ...
is isomorphic to a sublattice of the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is p ...
lattice of some set. *: Another variant, Stone's duality, states that there exists a duality (in the sense of an arrow-reversing equivalence) between the
categories Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) * Category (Kant) *Categories (Peirce) * ...
of Boolean algebras and that of
Stone space In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact totally disconnected Hausdorff space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in ...
s. * The
Poincaré–Birkhoff–Witt theorem In mathematics, more specifically in the theory of Lie algebras, the Poincaré–Birkhoff–Witt theorem (or PBW theorem) is a result giving an explicit description of the universal enveloping algebra of a Lie algebra. It is named after Henri Po ...
states that every
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
embeds into the commutator Lie algebra of its
universal enveloping algebra In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representati ...
. *
Ado's theorem In abstract algebra, Ado's theorem is a theorem characterizing finite-dimensional Lie algebras. Statement Ado's theorem states that every finite-dimensional Lie algebra ''L'' over a field ''K'' of characteristic zero can be viewed as a Lie algebra ...
states that every finite-dimensional
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
over a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
of
characteristic zero In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive id ...
embeds into the Lie algebra of
endomorphism In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a gr ...
s of some finite-dimensional vector space. *
Birkhoff's HSP theorem In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, t ...
states that every
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
of an algebra ''A'' is the homomorphic image of a
subalgebra In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear oper ...
of a
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one t ...
of copies of ''A''. * In the study of
semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'' ...
s, the
Wagner–Preston theorem In group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that ''x = xyx'' and ''y = yxy'', i.e. a regular semig ...
provides a representation of an
inverse semigroup In group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that ''x = xyx'' and ''y = yxy'', i.e. a regular semig ...
''S'', as a homomorphic image of the set of
partial bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
s on ''S'', and the semigroup operation given by
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
.


Category theory

* The
Yoneda lemma In mathematics, the Yoneda lemma is arguably the most important result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (view ...
provides a full and faithful limit-preserving embedding of any category into a category of presheaves. * Mitchell's embedding theorem for
abelian categories In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abe ...
realises every
small Small may refer to: Science and technology * SMALL, an ALGOL-like programming language * Small (anatomy), the lumbar region of the back * ''Small'' (journal), a nano-science publication * <small>, an HTML element that defines smaller text ...
abelian category as a full (and exactly embedded)
subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, ...
of a
category of modules In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the rin ...
over some
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
. * Mostowski's collapsing theorem states that every well-founded extensional structure is isomorphic to a transitive set with the ∈-relation. * One of the fundamental theorems in
sheaf Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics), a mathematical tool * Sheaf toss, a Scottish sport * River Sheaf, a tributary of River Don in England * '' The Sheaf'', a student-run newspaper s ...
theory states that every sheaf over a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
can be thought of as a sheaf of
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sign ...
s of some (étalé) bundle over that space: the categories of sheaves on a topological space and that of
étalé space In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
s over it are equivalent, where the equivalence is given by the
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
that sends a bundle to its sheaf of (local) sections.


Functional analysis

* The
Gelfand–Naimark–Segal construction In functional analysis, a discipline within mathematics, given a C*-algebra ''A'', the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of ''A'' and certain linear functionals on ''A'' (called ' ...
embeds any
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuou ...
in an algebra of
bounded operator In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector s ...
s on some
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
. * The
Gelfand representation In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-alg ...
(also known as the commutative Gelfand–Naimark theorem) states that any commutative
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuou ...
is isomorphic to an algebra of continuous functions on its
Gelfand spectrum In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-alge ...
. It can also be seen as the construction as a duality between the category of commutative
C*-algebras In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuou ...
and that of
compact Hausdorff space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i ...
s. * The
Riesz–Markov–Kakutani representation theorem In mathematics, the Riesz–Markov–Kakutani representation theorem relates linear functionals on spaces of continuous functions on a locally compact space to measures in measure theory. The theorem is named for who introduced it for continuo ...
is actually a list of several theorems; one of them identifies the dual space of ''C''0(''X'') with the set of regular measures on ''X''.


Geometry

* The
Whitney embedding theorem In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: *The strong Whitney embedding theorem states that any smooth real -dimensional manifold (required also to be Hausdorff ...
s embed any abstract
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
in some
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
. * The
Nash embedding theorem The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instan ...
embeds an abstract
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ''T ...
isometrically in a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
.


See also

*
Classification theorem In mathematics, a classification theorem answers the classification problem "What are the objects of a given type, up to some equivalence?". It gives a non-redundant enumeration: each object is equivalent to exactly one class. A few issues relat ...


References

{{DEFAULTSORT:Representation Theorem Mathematical theorems