Resolvent Set
   HOME

TheInfoList



OR:

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
and
operator theory In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operato ...
, the resolvent set of a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s for which the operator is in some sense "
well-behaved In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved or n ...
". The resolvent set plays an important role in the resolvent formalism.


Definitions

Let ''X'' be a
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
and let L\colon D(L)\rightarrow X be a linear operator with domain D(L) \subseteq X. Let id denote the identity operator on ''X''. For any \lambda \in \mathbb, let :L_ = L - \lambda\,\mathrm. A complex number \lambda is said to be a regular value if the following three statements are true: # L_\lambda is
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
, that is, the corestriction of L_\lambda to its image has an inverse R(\lambda, L)=(L-\lambda \,\mathrm)^ called the resolvent; # R(\lambda,L) is a bounded linear operator; # R(\lambda,L) is defined on a dense subspace of ''X'', that is, L_\lambda has dense range. The resolvent set of ''L'' is the set of all regular values of ''L'': :\rho(L) = \. The
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
is the complement of the resolvent set :\sigma (L) = \mathbb \setminus \rho (L), and subject to a mutually singular spectral decomposition into the point spectrum (when condition 1 fails), the
continuous spectrum In the physical sciences, the term ''spectrum'' was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersion (optics), dispersed through a prism (optics), prism. ...
(when condition 2 fails) and the residual spectrum (when condition 3 fails). If L is a closed operator, then so is each L_\lambda, and condition 3 may be replaced by requiring that L_\lambda be
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
.


Properties

* The resolvent set \rho(L) \subseteq \mathbb of a bounded linear operator ''L'' is an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
. * More generally, the resolvent set of a densely defined closed unbounded operator is an open set.


Notes


References

* * (See section 8.3)


External links

* {{springer, , id = R/r081610 , title = Resolvent set , last = Voitsekhovskii , first = M.I.


See also

* Resolvent formalism * Spectrum (functional analysis) * Decomposition of spectrum (functional analysis) Linear algebra Operator theory