In
statistics, efficiency is a measure of quality of an
estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the ...
, of an
experimental design
The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associ ...
, or of a
hypothesis testing
A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis.
Hypothesis testing allows us to make probabilistic statements about population parameters.
...
procedure. Essentially, a more efficient estimator, needs fewer input data or observations than a less efficient one to achieve the
Cramér–Rao bound
In estimation theory and statistics, the Cramér–Rao bound (CRB) expresses a lower bound on the variance of unbiased estimators of a deterministic (fixed, though unknown) parameter, the variance of any such estimator is at least as high as the i ...
.
An ''efficient estimator'' is characterized by having the smallest possible
variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of number ...
, indicating that there is a small
deviance between the estimated value and the "true" value in the
L2 norm
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and i ...
sense.
The relative efficiency of two procedures is the ratio of their efficiencies, although often this concept is used where the comparison is made between a given procedure and a notional "best possible" procedure. The efficiencies and the relative efficiency of two procedures theoretically depend on the sample size available for the given procedure, but it is often possible to use the asymptotic relative efficiency (defined as the limit of the relative efficiencies as the sample size grows) as the principal comparison measure.
Estimators
The efficiency of an
unbiased
Bias is a disproportionate weight ''in favor of'' or ''against'' an idea or thing, usually in a way that is closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individual, a group, ...
estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the ...
, ''T'', of a
parameter
A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
''θ'' is defined as
:
where
is the
Fisher information
In mathematical statistics, the Fisher information (sometimes simply called information) is a way of measuring the amount of information that an observable random variable ''X'' carries about an unknown parameter ''θ'' of a distribution that model ...
of the sample. Thus ''e''(''T'') is the minimum possible variance for an unbiased estimator divided by its actual variance. The
Cramér–Rao bound
In estimation theory and statistics, the Cramér–Rao bound (CRB) expresses a lower bound on the variance of unbiased estimators of a deterministic (fixed, though unknown) parameter, the variance of any such estimator is at least as high as the i ...
can be used to prove that ''e''(''T'') ≤ 1.
Efficient estimators
An efficient estimator is an
estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the ...
that estimates the quantity of interest in some “best possible” manner. The notion of “best possible” relies upon the choice of a particular
loss function
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "co ...
— the function which quantifies the relative degree of undesirability of estimation errors of different magnitudes. The most common choice of the loss function is
quadratic
In mathematics, the term quadratic describes something that pertains to squares, to the operation of squaring, to terms of the second degree, or equations or formulas that involve such terms. ''Quadratus'' is Latin for ''square''.
Mathematics ...
, resulting in the
mean squared error
In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference betwe ...
criterion of optimality.
In general, the spread of an estimator around the parameter θ is a measure of estimator efficiency and performance. This performance can be calculated by finding the mean squared error. More formally, let ''T'' be an estimator for the parameter ''θ''. The mean squared error of ''T'' is the value