In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a multiplicative inverse or reciprocal for a
number
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
''x'', denoted by 1/''x'' or ''x''
−1, is a number which when
multiplied by ''x'' yields the
multiplicative identity
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
, 1. The multiplicative inverse of a
fraction
A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the
function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an
involution
Involution may refer to: Mathematics
* Involution (mathematics), a function that is its own inverse
* Involution algebra, a *-algebra: a type of algebraic structure
* Involute, a construction in the differential geometry of curves
* Exponentiati ...
).
Multiplying by a number is the same as
dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).
The term ''reciprocal'' was in common use at least as far back as the third edition of ''
Encyclopædia Britannica
The is a general knowledge, general-knowledge English-language encyclopaedia. It has been published by Encyclopædia Britannica, Inc. since 1768, although the company has changed ownership seven times. The 2010 version of the 15th edition, ...
'' (1797) to describe two numbers whose product is 1; geometrical quantities in inverse proportion are described as in a 1570 translation of
Euclid
Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
's ''
Elements''.
In the phrase ''multiplicative inverse'', the qualifier ''multiplicative'' is often omitted and then tacitly understood (in contrast to the
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
). Multiplicative inverses can be defined over many mathematical domains as well as numbers. In these cases it can happen that ; then "inverse" typically implies that an element is both a left and right
inverse.
The notation ''f''
−1 is sometimes also used for the
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
of the function ''f'', which is for most functions not equal to the multiplicative inverse. For example, the multiplicative inverse is the
cosecant of x, and not the
inverse sine of ''x'' denoted by or . The terminology difference ''reciprocal'' versus ''inverse'' is not sufficient to make this distinction, since many authors prefer the opposite naming convention, probably for historical reasons (for example in
French, the inverse function is preferably called the ).
Examples and counterexamples
In the real numbers,
zero
0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
does not have a reciprocal (
division by zero
In mathematics, division by zero, division (mathematics), division where the divisor (denominator) is 0, zero, is a unique and problematic special case. Using fraction notation, the general example can be written as \tfrac a0, where a is the di ...
is
undefined) because no real number multiplied by 0 produces 1 (the product of any number with zero is zero). With the exception of zero, reciprocals of every
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
are real, reciprocals of every
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
are rational, and reciprocals of every
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
are complex. The property that every element other than zero has a multiplicative inverse is part of the definition of a
field, of which these are all examples. On the other hand, no
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
other than 1 and −1 has an integer reciprocal, and so the integers are not a field.
In
modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to mo ...
, the
modular multiplicative inverse
In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer is an integer such that the product is congruent to 1 with respect to the modulus .. In the standard notation of modular arithmetic this cong ...
of ''a'' is also defined: it is the number ''x'' such that . This multiplicative inverse exists
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
''a'' and ''n'' are
coprime
In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
. For example, the inverse of 3 modulo 11 is 4 because . The
extended Euclidean algorithm
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers ''a'' and ''b'', also the coefficients of Bézout's id ...
may be used to compute it.
The
sedenion
In abstract algebra, the sedenions form a 16-dimension of a vector space, dimensional commutative property, noncommutative and associative property, nonassociative algebra over a field, algebra over the real numbers, usually represented by the cap ...
s are an algebra in which every nonzero element has a multiplicative inverse, but which nonetheless has divisors of zero, that is, nonzero elements ''x'', ''y'' such that ''xy'' = 0.
A
square matrix
In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Squ ...
has an inverse
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
its
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
has an inverse in the coefficient
ring. The linear map that has the matrix ''A''
−1 with respect to some base is then the inverse function of the map having ''A'' as matrix in the same base. Thus, the two distinct notions of the inverse of a function are strongly related in this case, but they still do not coincide, since the multiplicative inverse of ''Ax'' would be (''Ax'')
−1, not ''A''
−1x.
These two notions of an inverse function do sometimes coincide, for example for the function
where
is the
principal branch of the complex logarithm and