HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a
solid Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structur ...
behaves as if it contained different weakly interacting
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
s in
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
. For example, as an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
travels through a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
, its motion is disturbed in a complex way by its interactions with other electrons and with
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
. The electron behaves as though it has a different effective mass travelling unperturbed in vacuum. Such an electron is called an ''electron quasiparticle''. In another example, the aggregate motion of electrons in the valence band of a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
or a hole band in a metal behave as though the material instead contained positively charged quasiparticles called ''
electron hole In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle which is the lack of an electron at a position where one could exist in an atom or atomic lattice. Since in a normal atom or ...
s''. Other quasiparticles or collective excitations include the ''
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
'', a quasiparticle derived from the vibrations of atoms in a solid, and the '' plasmons'', a particle derived from
plasma oscillation Plasma oscillations, also known as Langmuir waves (after Irving Langmuir), are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability ...
. These phenomena are typically called ''quasiparticles'' if they are related to
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s, and called ''collective excitations'' if they are related to
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
s, although the precise distinction is not universally agreed upon. ''A guide to Feynman diagrams in the many-body problem'', by Richard D. Mattuck, p10
"As we have seen, the quasiparticle consists of the original real, individual particle, plus a cloud of disturbed neighbors. It behaves very much like an individual particle, except that it has an effective mass and a lifetime. But there also exist other kinds of fictitious particles in many-body systems, i.e. 'collective excitations'. These do not center around individual particles, but instead involve collective, wavelike motion of ''all'' the particles in the system simultaneously."
Thus, electrons and electron holes (fermions) are typically called ''quasiparticles'', while phonons and plasmons (bosons) are typically called ''collective excitations''. The quasiparticle concept is important in
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the su ...
because it can simplify the many-body problem in
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
. The theory of quasiparticles was started by the Soviet physicist
Lev Landau Lev Davidovich Landau (russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet-Azerbaijani physicist of Jewish descent who made fundamental contributions to many areas of theoretical physics. His ac ...
in the 1930s.


Overview


General introduction

Solid Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structur ...
s are made of only three kinds of particles:
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s,
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s, and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s. Quasiparticles are none of these; instead, each of them is an ''
emergent phenomenon In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergen ...
'' that occurs inside the solid. Therefore, while it is quite possible to have a single particle (electron or proton or neutron) floating in space, a quasiparticle can only exist inside interacting many-particle systems (primarily solids). Motion in a solid is extremely complicated: Each electron and proton is pushed and pulled (by
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is convention ...
) by all the other electrons and protons in the solid (which may themselves be in motion). It is these strong interactions that make it very difficult to predict and understand the behavior of solids (see many-body problem). On the other hand, the motion of a ''non-interacting'' classical particle is relatively simple; it would move in a straight line at constant velocity. This is the motivation for the concept of quasiparticles: The complicated motion of the ''real'' particles in a solid can be mathematically transformed into the much simpler motion of imagined quasiparticles, which behave more like non-interacting particles. In summary, quasiparticles are a mathematical tool for simplifying the description of solids.


Relation to many-body quantum mechanics

The principal motivation for quasiparticles is that it is almost impossible to ''directly'' describe every particle in a macroscopic system. For example, a barely-visible (0.1mm) grain of sand contains around 1017 nuclei and 1018 electrons. Each of these attracts or repels every other by
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is convention ...
. In principle, the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
predicts exactly how this system will behave. But the Schrödinger equation in this case is a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to h ...
(PDE) on a 3×1018-dimensional vector space—one dimension for each coordinate (x,y,z) of each particle. Directly and straightforwardly trying to solve such a PDE is impossible in practice. Solving a PDE on a 2-dimensional space is typically much harder than solving a PDE on a 1-dimensional space (whether analytically or numerically); solving a PDE on a 3-dimensional space is significantly harder still; and thus solving a PDE on a 3×1018-dimensional space is quite impossible by straightforward methods. One simplifying factor is that the system as a whole, like any quantum system, has a
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
and various
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to ...
s with higher and higher energy above the ground state. In many contexts, only the "low-lying" excited states, with energy reasonably close to the ground state, are relevant. This occurs because of the Boltzmann distribution, which implies that very-high-energy
thermal fluctuations In statistical mechanics, thermal fluctuations are random deviations of a system from its average state, that occur in a system at equilibrium.In statistical mechanics they are often simply referred to as fluctuations. All thermal fluctuations b ...
are unlikely to occur at any given temperature. Quasiparticles and collective excitations are a type of low-lying excited state. For example, a crystal at
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibra ...
is in the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
, but if one
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
is added to the crystal (in other words, if the crystal is made to vibrate slightly at a particular frequency) then the crystal is now in a low-lying excited state. The single phonon is called an ''elementary excitation''. More generally, low-lying excited states may contain any number of elementary excitations (for example, many phonons, along with other quasiparticles and collective excitations). When the material is characterized as having "several elementary excitations", this statement presupposes that the different excitations can be combined. In other words, it presupposes that the excitations can coexist simultaneously and independently. This is never ''exactly'' true. For example, a solid with two identical phonons does not have exactly twice the excitation energy of a solid with just one phonon, because the crystal vibration is slightly anharmonic. However, in many materials, the elementary excitations are very ''close'' to being independent. Therefore, as a ''starting point'', they are treated as free, independent entities, and then corrections are included via interactions between the elementary excitations, such as "phonon-phonon
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
". Therefore, using quasiparticles / collective excitations, instead of analyzing 1018 particles, one needs to deal with only a handful of somewhat-independent elementary excitations. It is, therefore, a very effective approach to simplify the many-body problem in quantum mechanics. This approach is not useful for ''all'' systems, however: In
strongly correlated material Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermio ...
s, the elementary excitations are so far from being independent that it is not even useful as a starting point to treat them as independent.


Distinction between quasiparticles and collective excitations

Usually, an elementary excitation is called a "quasiparticle" if it is a
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
and a "collective excitation" if it is a
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
. However, the precise distinction is not universally agreed upon. There is a difference in the way that quasiparticles and collective excitations are intuitively envisioned. A quasiparticle is usually thought of as being like a dressed particle: it is built around a real particle at its "core", but the behavior of the particle is affected by the environment. A standard example is the "electron quasiparticle": an electron in a crystal behaves as if it had an effective mass which differs from its real mass. On the other hand, a collective excitation is usually imagined to be a reflection of the aggregate behavior of the system, with no single real particle at its "core". A standard example is the
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
, which characterizes the vibrational motion of every atom in the crystal. However, these two visualizations leave some ambiguity. For example, a
magnon A magnon is a quasiparticle, a collective excitation of the electrons' spin structure in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of en ...
in a
ferromagnet Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
can be considered in one of two perfectly equivalent ways: (a) as a mobile defect (a misdirected spin) in a perfect alignment of magnetic moments or (b) as a quantum of a collective spin wave that involves the precession of many spins. In the first case, the magnon is envisioned as a quasiparticle, in the second case, as a collective excitation. However, both (a) and (b) are equivalent and correct descriptions. As this example shows, the intuitive distinction between a quasiparticle and a collective excitation is not particularly important or fundamental. The problems arising from the collective nature of quasiparticles have also been discussed within the philosophy of science, notably in relation to the identity conditions of quasiparticles and whether they should be considered "real" by the standards of, for example,
entity realism Entity realism (also selective realism), sometimes equated with referential realism, is a philosophical position within the debate about scientific realism. It is a variation of realism (independently proposed by Stanford School philosophers Nancy ...
.


Effect on bulk properties

By investigating the properties of individual quasiparticles, it is possible to obtain a great deal of information about low-energy systems, including the flow properties and
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat cap ...
. In the heat capacity example, a crystal can store energy by forming
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
s, and/or forming
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. ...
s, and/or forming plasmons, etc. Each of these is a separate contribution to the overall heat capacity.


History

The idea of quasiparticles originated in Lev Landau's theory of Fermi liquids, which was originally invented for studying liquid
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron (the most common isotope, helium-4, having two protons and two neutrons in contrast). Other than protium (ordinary hydrogen), helium-3 is the ...
. For these systems a strong similarity exists between the notion of quasiparticle and dressed particles in
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
. The dynamics of Landau's theory is defined by a kinetic equation of the mean-field type. A similar equation, the
Vlasov equation The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction, e.g. Coulomb. The equation was first suggested for description of plasma ...
, is valid for a plasma in the so-called
plasma approximation Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood plas ...
. In the plasma approximation, charged particles are considered to be moving in the electromagnetic field collectively generated by all other particles, and hard
collision In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great fo ...
s between the charged particles are neglected. When a kinetic equation of the mean-field type is a valid first-order description of a system, second-order corrections determine the
entropy production Entropy production (or generation) is the amount of entropy which is produced in any irreversible processes such as heat and mass transfer processes including motion of bodies, heat exchange, fluid flow, substances expanding or mixing, anelastic ...
, and generally take the form of a Boltzmann-type collision term, in which figure only "far collisions" between
virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturba ...
s. In other words, every type of mean-field kinetic equation, and in fact every
mean-field theory In physics and probability theory, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of ...
, involves a quasiparticle concept.


Examples of quasiparticles and collective excitations

This section contains examples of quasiparticles and collective excitations. The first subsection below contains common ones that occur in a wide variety of materials under ordinary conditions; the second subsection contains examples that arise only in special contexts.


More common examples

*In solids, an electron quasiparticle is an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
as affected by the other forces and interactions in the solid. The electron quasiparticle has the same charge and
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
as a "normal" (
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...
) electron, and like a normal electron, it is a
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
. However, its mass can differ substantially from that of a normal electron; see the article effective mass. Its electric field is also modified, as a result of electric field screening. In many other respects, especially in metals under ordinary conditions, these so-called Landau quasiparticles closely resemble familiar electrons; as Crommie's " quantum corral" showed, an STM can clearly image their interference upon scattering. *A hole is a quasiparticle consisting of the lack of an electron in a state; it is most commonly used in the context of empty states in the valence band of a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
. A hole has the opposite charge of an electron. *A
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
is a collective excitation associated with the vibration of atoms in a rigid
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pattern ...
. It is a
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity ( physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizat ...
of a
sound wave In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the ...
. *A
magnon A magnon is a quasiparticle, a collective excitation of the electrons' spin structure in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of en ...
is a collective excitation associated with the electrons' spin structure in a crystal lattice. It is a quantum of a spin wave. *In materials, a photon quasiparticle is a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
as affected by its interactions with the material. In particular, the photon quasiparticle has a modified relation between wavelength and energy (
dispersion relation In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given t ...
), as described by the material's
index of refraction In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
. It may also be termed a polariton, especially near a resonance of the material. For example, an exciton-polariton is a superposition of an exciton and a photon; a phonon-polariton is a superposition of a phonon and a photon. *A plasmon is a collective excitation, which is the quantum of
plasma oscillation Plasma oscillations, also known as Langmuir waves (after Irving Langmuir), are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability ...
s (wherein all the electrons simultaneously oscillate with respect to all the ions). *A polaron is a quasiparticle which comes about when an electron interacts with the polarization of its surrounding ions. *An
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. ...
is an electron and hole bound together. *A plasmariton is a coupled optical phonon and dressed photon consisting of a plasmon and photon.


More specialized examples

*A roton is a collective excitation associated with the rotation of a fluid (often a superfluid). It is a quantum of a
vortex In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in ...
. *
Composite fermion A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions we ...
s arise in a two-dimensional system subject to a large magnetic field, most famously those systems that exhibit the
fractional quantum Hall effect The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of e^2/h. It is a property of a collective state in which elec ...
. These quasiparticles are quite unlike normal particles in two ways. First, their charge can be less than the electron charge ''e''. In fact, they have been observed with charges of e/3, e/4, e/5, and e/7. Second, they can be
anyon In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchan ...
s, an exotic type of particle that is neither a
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
nor
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
. * Stoner excitations in ferromagnetic metals * Bogoliubov quasiparticles in superconductors.
Superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
is carried by Cooper pairs—usually described as pairs of electrons—that move through the crystal lattice without resistance. A broken Cooper pair is called a Bogoliubov quasiparticle. It differs from the conventional quasiparticle in metal because it combines the properties of a negatively charged electron and a positively charged hole (an electron void). Physical objects like impurity atoms, from which quasiparticles scatter in an ordinary metal, only weakly affect the energy of a Cooper pair in a conventional superconductor. In conventional superconductors, interference between Bogoliubov quasiparticles is tough for an STM to see. Because of their complex global electronic structures, however, high-Tc cuprate superconductors are another matter. Thus Davis and his colleagues were able to resolve distinctive patterns of quasiparticle interference in Bi-2212. *A
Majorana fermion A Majorana fermion (, uploaded 19 April 2013, retrieved 5 October 2014; and also based on the pronunciation of physicist's name.), also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by ...
is a particle which equals its own antiparticle, and can emerge as a quasiparticle in certain superconductors, or in a quantum spin liquid. *
Magnetic monopole In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
s arise in condensed matter systems such as spin ice and carry an effective magnetic charge as well as being endowed with other typical quasiparticle properties such as an effective mass. They may be formed through spin flips in frustrated pyrochlore ferromagnets and interact through a Coulomb potential. *
Skyrmion In particle theory, the skyrmion () is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by (and named after) Tony Skyrme in 1961. As a topological sol ...
s and Hopfions * Spinon is represented by quasiparticle produced as a result of electron spin-charge separation, and can form both quantum spin liquid and strongly correlated quantum spin liquid in some
minerals In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed ...
like
Herbertsmithite Herbertsmithite is a mineral with chemical structure Zn Cu3( OH)6 Cl2. It is named after the mineralogist Herbert Smith (1872–1953) and was first found in 1972 in Chile. It is polymorphous with kapellasite and closely related to paratacami ...
. *Angulons can be used to describe the rotation of molecules in solvents. First postulated theoretically in 2015, the existence of the angulon was confirmed in February 2017, after a series of experiments spanning 20 years. Heavy and light species of molecules were found to rotate inside
superfluid helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. Its ...
droplets, in good agreement with the angulon theory. * Type-II Weyl fermions break
Lorentz symmetry In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the sam ...
, the foundation of the
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
, which cannot be broken by real particles. *A dislon is a quantized field associated with the quantization of the lattice displacement field of a crystal dislocation. It is a quantum of vibration and static strain field of a dislocation line.


See also

*
Fractionalization In quantum mechanics, fractionalization is the phenomenon whereby the quasiparticles of a system cannot be constructed as combinations of its elementary constituents. One of the earliest and most prominent examples is the fractional quantum Hall ...
* List of quasiparticles *
Mean-field theory In physics and probability theory, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of ...
* Pseudoparticle *
Composite fermion A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions we ...
* Composite boson


References


Further reading

* L. D. Landau, ''Soviet Phys. JETP.'' 3:920 (1957) *L. D. Landau, ''Soviet Phys. JETP.'' 5:101 (1957) *A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, ''Methods of Quantum Field Theory in Statistical Physics'' (1963, 1975). Prentice-Hall, New Jersey; Dover Publications, New York. *D. Pines, and P. Nozières, ''The Theory of Quantum Liquids'' (1966). W.A. Benjamin, New York. ''Volume I: Normal Fermi Liquids'' (1999). Westview Press, Boulder. *J. W. Negele, and H. Orland, ''Quantum Many-Particle Systems'' (1998). Westview Press, Boulder


External links


PhysOrg.com
– Scientists find new 'quasiparticles'
Curious 'quasiparticles' baffle physicists
by Jacqui Hayes, Cosmos 6 June 2008. Accessed June 2008 {{Authority control Physical phenomena Condensed matter physics Quantum phases Mesoscopic physics Emergence