Common Lisp (CL) is a dialect of the
Lisp programming language, published in
ANSI standard document ''ANSI INCITS 226-1994 (S20018)'' (formerly ''X3.226-1994 (R1999)''). The
Common Lisp HyperSpec, a
hyperlink
In computing, a hyperlink, or simply a link, is a digital reference to data that the user can follow or be guided by clicking or tapping. A hyperlink points to a whole document or to a specific element within a document. Hypertext is text wit ...
ed
HTML version, has been derived from the ANSI Common Lisp standard.
The Common Lisp language was developed as a standardized and improved successor of
Maclisp. By the early 1980s several groups were already at work on diverse successors to MacLisp:
Lisp Machine Lisp
Lisp Machine Lisp is a programming language, a dialect of the language Lisp. A direct descendant of Maclisp, it was initially developed in the mid to late 1970s as the system programming language for the Massachusetts Institute of Technology (M ...
(aka ZetaLisp),
Spice Lisp
Spice Lisp (Scientific Personal Integrated Computing Environment) is a programming language, a dialect of Lisp. Its implementation, originally written by Carnegie Mellon University's (CMU) Spice Lisp Group, targeted the microcode of the 16-bit w ...
,
NIL and
S-1 Lisp S-1 Lisp was a Lisp implementation written in Lisp for the 36-bit pipelined S-1 Mark IIA supercomputer computer architecture, which has 32 megawords of RAM
Ram, ram, or RAM may refer to:
Animals
* A male sheep
* Ram cichlid, a freshwater trop ...
. Common Lisp sought to unify, standardise, and extend the features of these MacLisp dialects. Common Lisp is not an implementation, but rather a language
specification. Several
implementations of the Common Lisp standard are available, including
free and open-source software
Free and open-source software (FOSS) is a term used to refer to groups of software consisting of both free software and open-source software where anyone is freely licensed to use, copy, study, and change the software in any way, and the source ...
and proprietary products.
Common Lisp is a general-purpose,
multi-paradigm programming language
Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms.
Some paradigms are concerned mainly with implications for the execution model of the language, suc ...
. It supports a combination of
procedural
Procedural may refer to:
* Procedural generation, a term used in computer graphics applications
*Procedural knowledge, the knowledge exercised in the performance of some task
* Procedural law, a legal concept
*Procedural memory, a cognitive scienc ...
,
functional
Functional may refer to:
* Movements in architecture:
** Functionalism (architecture)
** Form follows function
* Functional group, combination of atoms within molecules
* Medical conditions without currently visible organic basis:
** Functional sy ...
, and
object-oriented programming paradigms. As a
dynamic programming language, it facilitates evolutionary and
incremental software development, with iterative
compilation into efficient run-time programs. This incremental development is often done interactively without interrupting the running application.
It also supports optional type annotation and casting, which can be added as necessary at the later
profiling and optimization stages, to permit the compiler to generate more efficient code. For instance,
fixnum
can hold an
unboxed integer in a range supported by the hardware and implementation, permitting more efficient arithmetic than on big integers or arbitrary precision types. Similarly, the compiler can be told on a per-module or per-function basis which type of safety level is wanted, using ''optimize'' declarations.
Common Lisp includes
CLOS, an
object system
Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields (often known as attributes or ''properties''), and the code is in the form of pro ...
that supports
multimethods
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of ...
and method combinations. It is often implemented with a
Metaobject Protocol.
Common Lisp is extensible through standard features such as ''Lisp
macros'' (code transformations) and ''reader macros'' (input parsers for characters).
Common Lisp provides partial backwards compatibility with
Maclisp and John McCarthy's original
Lisp
A lisp is a speech impairment in which a person misarticulates sibilants (, , , , , , , ). These misarticulations often result in unclear speech.
Types
* A frontal lisp occurs when the tongue is placed anterior to the target. Interdental lisping ...
. This allows older Lisp software to be ported to Common Lisp.
History
Work on Common Lisp started in 1981 after an initiative by ARPA manager Bob Engelmore to develop a single community standard Lisp dialect. Much of the initial language design was done via electronic mail. In 1982,
Guy L. Steele Jr. gave the first overview of Common Lisp at the 1982 ACM Symposium on LISP and functional programming.
The first language documentation was published in 1984 as
Common Lisp the Language (known as CLtL1), first edition. A second edition (known as CLtL2), published in 1990, incorporated many changes to the language, made during the ANSI Common Lisp standardization process: extended LOOP syntax, the Common Lisp Object System, the Condition System for error handling, an interface to the pretty printer and much more. But CLtL2 does not describe the final ANSI Common Lisp standard and thus is not a documentation of ANSI Common Lisp. The final ANSI Common Lisp standard then was published in 1994. Since then no update to the standard has been published. Various extensions and improvements to Common Lisp (examples are Unicode, Concurrency, CLOS-based IO) have been provided by implementations and libraries.
Syntax
Common Lisp is a dialect of Lisp. It uses
S-expressions to denote both code and data structure. Function calls, macro forms and special forms are written as lists, with the name of the operator first, as in these examples:
(+ 2 2) ; adds 2 and 2, yielding 4. The function's name is '+'. Lisp has no operators as such.
(defvar *x*) ; Ensures that a variable *x* exists,
; without giving it a value. The asterisks are part of
; the name, by convention denoting a special (global) variable.
; The symbol *x* is also hereby endowed with the property that
; subsequent bindings of it are dynamic, rather than lexical.
(setf *x* 42.1) ; Sets the variable *x* to the floating-point value 42.1
;; Define a function that squares a number:
(defun square (x)
(* x x))
;; Execute the function:
(square 3) ; Returns 9
;; The 'let' construct creates a scope for local variables. Here
;; the variable 'a' is bound to 6 and the variable 'b' is bound
;; to 4. Inside the 'let' is a 'body', where the last computed value is returned.
;; Here the result of adding a and b is returned from the 'let' expression.
;; The variables a and b have lexical scope, unless the symbols have been
;; marked as special variables (for instance by a prior DEFVAR).
(let ((a 6)
(b 4))
(+ a b)) ; returns 10
Data types
Common Lisp has many
data type
In computer science and computer programming, a data type (or simply type) is a set of possible values and a set of allowed operations on it. A data type tells the compiler or interpreter how the programmer intends to use the data. Most progra ...
s.
Scalar types
''Number'' types include
integers,
ratios,
floating-point numbers, and
complex numbers.
Common Lisp uses
bignum
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are li ...
s to represent numerical values of arbitrary size and precision. The ratio type represents fractions exactly, a facility not available in many languages. Common Lisp automatically coerces numeric values among these types as appropriate.
The Common Lisp ''
character
Character or Characters may refer to:
Arts, entertainment, and media Literature
* ''Character'' (novel), a 1936 Dutch novel by Ferdinand Bordewijk
* ''Characters'' (Theophrastus), a classical Greek set of character sketches attributed to The ...
'' type is not limited to
ASCII characters. Most modern implementations allow
Unicode characters.
The ''
symbol
A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
'' type is common to Lisp languages, but largely unknown outside them. A symbol is a unique, named data object with several parts: name, value, function, property list, and package. Of these, ''value cell'' and ''function cell'' are the most important. Symbols in Lisp are often used similarly to identifiers in other languages: to hold the value of a variable; however there are many other uses. Normally, when a symbol is evaluated, its value is returned. Some symbols evaluate to themselves, for example, all symbols in the keyword package are self-evaluating. Boolean values in Common Lisp are represented by the self-evaluating symbols T and NIL. Common Lisp has namespaces for symbols, called 'packages'.
A number of functions are available for
rounding scalar numeric values in various ways. The function
round
rounds the argument to the nearest integer, with halfway cases rounded to the even integer. The functions
truncate
,
floor
, and
ceiling
round towards zero, down, or up respectively. All these functions return the discarded fractional part as a secondary value. For example,
(floor -2.5)
yields −3, 0.5;
(ceiling -2.5)
yields −2, −0.5;
(round 2.5)
yields 2, 0.5; and
(round 3.5)
yields 4, −0.5.
Data structures
''Sequence'' types in Common Lisp include lists, vectors, bit-vectors, and strings. There are many operations that can work on any sequence type.
As in almost all other Lisp dialects, ''lists'' in Common Lisp are composed of ''conses'', sometimes called ''cons cells'' or ''pairs''. A cons is a data structure with two slots, called its ''car'' and ''cdr''. A list is a linked chain of conses or the empty list. Each cons's car refers to a member of the list (possibly another list). Each cons's cdr refers to the next cons—except for the last cons in a list, whose cdr refers to the
nil
value. Conses can also easily be used to implement trees and other complex data structures; though it is usually advised to use structure or class instances instead. It is also possible to create circular data structures with conses.
Common Lisp supports multidimensional ''arrays'', and can dynamically resize ''adjustable'' arrays if required. Multidimensional arrays can be used for matrix mathematics. A ''vector'' is a one-dimensional array. Arrays can carry any type as members (even mixed types in the same array) or can be specialized to contain a specific type of members, as in a vector of bits. Usually, only a few types are supported. Many implementations can optimize array functions when the array used is type-specialized. Two type-specialized array types are standard: a ''string'' is a vector of characters, while a ''bit-vector'' is a vector of
bits.
''
Hash tables'' store associations between data objects. Any object may be used as key or value. Hash tables are automatically resized as needed.
''Packages'' are collections of symbols, used chiefly to separate the parts of a program into
namespaces. A package may ''export'' some symbols, marking them as part of a public interface. Packages can use other packages.
''Structures'', similar in use to
C structs and
Pascal
Pascal, Pascal's or PASCAL may refer to:
People and fictional characters
* Pascal (given name), including a list of people with the name
* Pascal (surname), including a list of people and fictional characters with the name
** Blaise Pascal, Fren ...
records, represent arbitrary complex data structures with any number and type of fields (called ''slots''). Structures allow single-inheritance.
''Classes'' are similar to structures, but offer more dynamic features and multiple-inheritance. (See
CLOS). Classes have been added late to Common Lisp and there is some conceptual overlap with structures. Objects created of classes are called ''Instances''. A special case is Generic Functions. Generic Functions are both functions and instances.
Functions
Common Lisp supports
first-class functions. For instance, it is possible to write functions that take other functions as arguments or return functions as well. This makes it possible to describe very general operations.
The Common Lisp library relies heavily on such higher-order functions. For example, the
sort
function takes a
relational operator as an argument and key function as an optional keyword argument. This can be used not only to sort any type of data, but also to sort data structures according to a key.
;; Sorts the list using the > and < function as the relational operator.
(sort (list 5 2 6 3 1 4) #'>) ; Returns (6 5 4 3 2 1)
(sort (list 5 2 6 3 1 4) #'<) ; Returns (1 2 3 4 5 6)
;; Sorts the list according to the first element of each sub-list.
(sort (list '(9 A) '(3 B) '(4 C)) #'< :key #'first) ; Returns ((3 B) (4 C) (9 A))
The evaluation model for functions is very simple. When the evaluator encounters a form
(f a1 a2...)
then it presumes that the symbol named f is one of the following:
# A special operator (easily checked against a fixed list)
# A macro operator (must have been defined previously)
# The name of a function (default), which may either be a symbol, or a sub-form beginning with the symbol
lambda
.
If f is the name of a function, then the arguments a1, a2, ..., an are evaluated in left-to-right order, and the function is found and invoked with those values supplied as parameters.
Defining functions
The
macro defun
defines functions where a function definition gives the name of the function, the names of any arguments, and a function body:
(defun square (x)
(* x x))
Function definitions may include compiler
directives, known as ''declarations'', which provide hints to the compiler about optimization settings or the data types of arguments. They may also include ''documentation strings'' (docstrings), which the Lisp system may use to provide interactive documentation:
(defun square (x)
"Calculates the square of the single-float x."
(declare (single-float x) (optimize (speed 3) (debug 0) (safety 1)))
(the single-float (* x x)))
Anonymous functions (
function literal
In computer programming, an anonymous function (function literal, lambda abstraction, lambda function, lambda expression or block) is a Function (computer science), function definition that is not name binding, bound to an Name (computer science), ...
s) are defined using
lambda
expressions, e.g.
(lambda (x) (* x x))
for a function that squares its argument. Lisp programming style frequently uses higher-order functions for which it is useful to provide anonymous functions as arguments.
Local functions can be defined with
flet
and
labels
.
(flet ((square (x)
(* x x)))
(square 3))
There are several other operators related to the definition and manipulation of functions. For instance, a function may be compiled with the
compile
operator. (Some Lisp systems run functions using an interpreter by default unless instructed to compile; others compile every function).
Defining generic functions and methods
The macro
defgeneric
defines
generic functions. Generic functions are a collection of
methods
Method ( grc, μέθοδος, methodos) literally means a pursuit of knowledge, investigation, mode of prosecuting such inquiry, or system. In recent centuries it more often means a prescribed process for completing a task. It may refer to:
*Scien ...
.
The macro
defmethod
defines methods.
Methods can specialize their parameters over CLOS ''standard classes'', ''system classes'', ''structure classes'' or individual objects. For many types, there are corresponding ''system classes''.
When a generic function is called,
multiple-dispatch will determine the effective method to use.
(defgeneric add (a b))
(defmethod add ((a number) (b number))
(+ a b))
(defmethod add ((a vector) (b number))
(map 'vector (lambda (n) (+ n b)) a))
(defmethod add ((a vector) (b vector))
(map 'vector #'+ a b))
(defmethod add ((a string) (b string))
(concatenate 'string a b))
(add 2 3) ; returns 5
(add #(1 2 3 4) 7) ; returns #(8 9 10 11)
(add #(1 2 3 4) #(4 3 2 1)) ; returns #(5 5 5 5)
(add "COMMON " "LISP") ; returns "COMMON LISP"
Generic Functions are also a
first class data type. There are many more features to Generic Functions and Methods than described above.
The function namespace
The namespace for function names is separate from the namespace for data variables. This is a key difference between Common Lisp and
Scheme A scheme is a systematic plan for the implementation of a certain idea.
Scheme or schemer may refer to:
Arts and entertainment
* ''The Scheme'' (TV series), a BBC Scotland documentary series
* The Scheme (band), an English pop band
* ''The Schem ...
. For Common Lisp, operators that define names in the function namespace include
defun
,
flet
,
labels
,
defmethod
and
defgeneric
.
To pass a function by name as an argument to another function, one must use the
function
special operator, commonly abbreviated as
#'
. The first
sort
example above refers to the function named by the symbol
>
in the function namespace, with the code
#'>
. Conversely, to call a function passed in such a way, one would use the
funcall
operator on the argument.
Scheme's evaluation model is simpler: there is only one namespace, and all positions in the form are evaluated (in any order) – not just the arguments. Code written in one dialect is therefore sometimes confusing to programmers more experienced in the other. For instance, many Common Lisp programmers like to use descriptive variable names such as ''list'' or ''string'' which could cause problems in Scheme, as they would locally shadow function names.
Whether a separate namespace for functions is an advantage is a source of contention in the Lisp community. It is usually referred to as the ''Lisp-1 vs. Lisp-2 debate''. Lisp-1 refers to Scheme's model and Lisp-2 refers to Common Lisp's model. These names were coined in a 1988 paper by
Richard P. Gabriel
Richard P. Gabriel (born 1949) is an American computer scientist known for his work in computing related to the programming language Lisp, and especially Common Lisp. His best known work was a 1990 essay "Lisp: Good News, Bad News, How to Win Bi ...
and
Kent Pitman, which extensively compares the two approaches.
Multiple return values
Common Lisp supports the concept of ''multiple values'', where any expression always has a single ''primary value'', but it might also have any number of ''secondary values'', which might be received and inspected by interested callers. This concept is distinct from returning a list value, as the secondary values are fully optional, and passed via a dedicated side channel. This means that callers may remain entirely unaware of the secondary values being there if they have no need for them, and it makes it convenient to use the mechanism for communicating information that is sometimes useful, but not always necessary. For example,
* The
TRUNCATE
function rounds the given number to an
integer towards zero. However, it also returns a remainder as a secondary value, making it very easy to determine what value was truncated. It also supports an optional divisor parameter, which can be used to perform
Euclidean division trivially:
(let ((x 1266778)
(y 458))
(multiple-value-bind (quotient remainder)
(truncate x y)
(format nil "~A divided by ~A is ~A remainder ~A" x y quotient remainder)))
;;;; => "1266778 divided by 458 is 2765 remainder 408"
*
GETHASH
returns the value of a key in an
associative map
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms an a ...
, or the default value otherwise, and a secondary boolean indicating whether the value was found. Thus code which does not care about whether the value was found or provided as the default can simply use it as-is, but when such distinction is important, it might inspect the secondary boolean and react appropriately. Both use cases are supported by the same call and neither is unnecessarily burdened or constrained by the other. Having this feature at the language level removes the need to check for the existence of the key or compare it to
null as would be done in other languages.
(defun get-answer (library)
(gethash 'answer library 42))
(defun the-answer-1 (library)
(format nil "The answer is ~A" (get-answer library)))
;;;; Returns "The answer is 42" if ANSWER not present in LIBRARY
(defun the-answer-2 (library)
(multiple-value-bind (answer sure-p)
(get-answer library)
(if (not sure-p)
"I don't know"
(format nil "The answer is ~A" answer))))
;;;; Returns "I don't know" if ANSWER not present in LIBRARY
Multiple values are supported by a handful of standard forms, most common of which are the
MULTIPLE-VALUE-BIND
special form for accessing secondary values and
VALUES
for returning multiple values:
(defun magic-eight-ball ()
"Return an outlook prediction, with the probability as a secondary value"
(values "Outlook good" (random 1.0)))
;;;; => "Outlook good"
;;;; => 0.3187
Other types
Other data types in Common Lisp include:
*''Pathnames'' represent files and directories in the
filesystem. The Common Lisp pathname facility is more general than most operating systems' file naming conventions, making Lisp programs' access to files broadly portable across diverse systems.
*Input and output ''streams'' represent sources and sinks of binary or textual data, such as the terminal or open files.
*Common Lisp has a built-in
pseudo-random number generator (PRNG). ''Random state'' objects represent reusable sources of pseudo-random numbers, allowing the user to seed the PRNG or cause it to replay a sequence.
*''Conditions'' are a type used to represent errors, exceptions, and other "interesting" events to which a program may respond.
*''Classes'' are
first-class objects, and are themselves instances of classes called
metaobject classes (
metaclasses
In object-oriented programming, a metaclass is a class whose instances are classes. Just as an ordinary class defines the behavior of certain objects, a metaclass defines the behavior of certain classes and their instances. Not all object-oriente ...
for short).
*''Readtables'' are a type of object which control how Common Lisp's reader parses the text of source code. By controlling which readtable is in use when code is read in, the programmer can change or extend the language's syntax.
Scope
Like programs in many other programming languages, Common Lisp programs make use of names to refer to variables, functions, and many other kinds of entities. Named references are subject to scope.
The association between a name and the entity which the name refers to is called a binding.
Scope refers to the set of circumstances in which a name is determined to have a particular binding.
Determiners of scope
The circumstances which determine scope in Common Lisp include:
* the location of a reference within an expression. If it's the leftmost position of a compound, it refers to a special operator or a macro or function binding, otherwise to a variable binding or something else.
* the kind of expression in which the reference takes place. For instance,
(go x)
means transfer control to label
x
, whereas
(print x)
refers to the variable
x
. Both scopes of
x
can be active in the same region of program text, since tagbody labels are in a separate namespace from variable names. A special form or macro form has complete control over the meanings of all symbols in its syntax. For instance, in
(defclass x (a b) ())
, a class definition, the
(a b)
is a list of base classes, so these names are looked up in the space of class names, and
x
isn't a reference to an existing binding, but the name of a new class being derived from
a
and
b
. These facts emerge purely from the semantics of
defclass
. The only generic fact about this expression is that
defclass
refers to a macro binding; everything else is up to
defclass
.
* the location of the reference within the program text. For instance, if a reference to variable
x
is enclosed in a binding construct such as a
let
which defines a binding for
x
, then the reference is in the scope created by that binding.
* for a variable reference, whether or not a variable symbol has been, locally or globally, declared special. This determines whether the reference is resolved within a lexical environment, or within a dynamic environment.
* the specific instance of the environment in which the reference is resolved. An environment is a run-time dictionary which maps symbols to bindings. Each kind of reference uses its own kind of environment. References to lexical variables are resolved in a lexical environment, et cetera. More than one environment can be associated with the same reference. For instance, thanks to recursion or the use of multiple threads, multiple activations of the same function can exist at the same time. These activations share the same program text, but each has its own lexical environment instance.
To understand what a symbol refers to, the Common Lisp programmer must know what kind of reference is being expressed, what kind of scope it uses if it is a variable reference (dynamic versus lexical scope), and also the run-time situation: in what environment is the reference resolved, where was the binding introduced into the environment, et cetera.
Kinds of environment
Global
Some environments in Lisp are globally pervasive. For instance, if a new type is defined, it is known everywhere thereafter. References to that type look it up in this global environment.
Dynamic
One type of environment in Common Lisp is the dynamic environment. Bindings established in this environment have dynamic extent, which means that a binding is established at the start of the execution of some construct, such as a
let
block, and disappears when that construct finishes executing: its lifetime is tied to the dynamic activation and deactivation of a block. However, a dynamic binding is not just visible within that block; it is also visible to all functions invoked from that block. This type of visibility is known as indefinite scope. Bindings which exhibit dynamic extent (lifetime tied to the activation and deactivation of a block) and indefinite scope (visible to all functions which are called from that block) are said to have dynamic scope.
Common Lisp has support for dynamically scoped variables, which are also called special variables. Certain other kinds of bindings are necessarily dynamically scoped also, such as restarts and catch tags. Function bindings cannot be dynamically scoped using
flet
(which only provides lexically scoped function bindings), but function objects (a first-level object in Common Lisp) can be assigned to dynamically scoped variables, bound using
let
in dynamic scope, then called using
funcall
or
APPLY
.
Dynamic scope is extremely useful because it adds referential clarity and discipline to
global variables. Global variables are frowned upon in computer science as potential sources of error, because they can give rise to ad-hoc, covert channels of communication among modules that lead to unwanted, surprising interactions.
In Common Lisp, a special variable which has only a top-level binding behaves just like a global variable in other programming languages. A new value can be stored into it, and that value simply replaces what is in the top-level binding. Careless replacement of the value of a global variable is at the heart of bugs caused by the use of global variables. However, another way to work with a special variable is to give it a new, local binding within an expression. This is sometimes referred to as "rebinding" the variable. Binding a dynamically scoped variable temporarily creates a new memory location for that variable, and associates the name with that location. While that binding is in effect, all references to that variable refer to the new binding; the previous binding is hidden. When execution of the binding expression terminates, the temporary memory location is gone, and the old binding is revealed, with the original value intact. Of course, multiple dynamic bindings for the same variable can be nested.
In Common Lisp implementations which support multithreading, dynamic scopes are specific to each thread of execution. Thus special variables serve as an abstraction for thread local storage. If one thread rebinds a special variable, this rebinding has no effect on that variable in other threads. The value stored in a binding can only be retrieved by the thread which created that binding. If each thread binds some special variable
*x*
, then
*x*
behaves like thread-local storage. Among threads which do not rebind
*x*
, it behaves like an ordinary global: all of these threads refer to the same top-level binding of
*x*
.
Dynamic variables can be used to extend the execution context with additional context information which is implicitly passed from function to function without having to appear as an extra function parameter. This is especially useful when the control transfer has to pass through layers of unrelated code, which simply cannot be extended with extra parameters to pass the additional data. A situation like this usually calls for a global variable. That global variable must be saved and restored, so that the scheme doesn't break under recursion: dynamic variable rebinding takes care of this. And that variable must be made thread-local (or else a big mutex must be used) so the scheme doesn't break under threads: dynamic scope implementations can take care of this also.
In the Common Lisp library, there are many standard special variables. For instance, all standard I/O streams are stored in the top-level bindings of well-known special variables. The standard output stream is stored in *standard-output*.
Suppose a function foo writes to standard output:
(defun foo ()
(format t "Hello, world"))
To capture its output in a character string, *standard-output* can be bound to a string stream and called:
(with-output-to-string (*standard-output*)
(foo))
-> "Hello, world" ; gathered output returned as a string
Lexical
Common Lisp supports lexical environments. Formally, the bindings in a lexical environment have
lexical scope and may have either an indefinite extent or dynamic extent, depending on the type of namespace.
Lexical scope means that visibility is physically restricted to the block in which the binding is established. References which are not textually (i.e. lexically) embedded in that block simply do not see that binding.
The tags in a TAGBODY have lexical scope. The expression (GO X) is erroneous if it is not embedded in a TAGBODY which contains a label X. However, the label bindings disappear when the TAGBODY terminates its execution, because they have dynamic extent. If that block of code is re-entered by the invocation of a
lexical closure
In programming languages, a closure, also lexical closure or function closure, is a technique for implementing lexically scoped name binding in a language with first-class functions. Operationally, a closure is a record storing a function toge ...
, it is invalid for the body of that closure to try to transfer control to a tag via GO:
(defvar *stashed*) ;; will hold a function
(tagbody
(setf *stashed* (lambda () (go some-label)))
(go end-label) ;; skip the (print "Hello")
some-label
(print "Hello")
end-label)
-> NIL
When the TAGBODY is executed, it first evaluates the setf form which stores a function in the special variable *stashed*. Then the (go end-label) transfers control to end-label, skipping the code (print "Hello"). Since end-label is at the end of the tagbody, the tagbody terminates, yielding NIL. Suppose that the previously remembered function is now called:
(funcall *stashed*) ;; Error!
This situation is erroneous. One implementation's response is an error condition containing the message, "GO: tagbody for tag SOME-LABEL has already been left". The function tried to evaluate (go some-label), which is lexically embedded in the tagbody, and resolves to the label. However, the tagbody isn't executing (its extent has ended), and so the control transfer cannot take place.
Local function bindings in Lisp have
lexical scope, and variable bindings also have lexical scope by default. By contrast with GO labels, both of these have indefinite extent. When a lexical function or variable binding is established, that binding continues to exist for as long as references to it are possible, even after the construct which established that binding has terminated. References to lexical variables and functions after the termination of their establishing construct are possible thanks to
lexical closure
In programming languages, a closure, also lexical closure or function closure, is a technique for implementing lexically scoped name binding in a language with first-class functions. Operationally, a closure is a record storing a function toge ...
s.
Lexical binding is the default binding mode for Common Lisp variables. For an individual symbol, it can be switched to dynamic scope, either by a local declaration, by a global declaration. The latter may occur implicitly through the use of a construct like DEFVAR or DEFPARAMETER. It is an important convention in Common Lisp programming that special (i.e. dynamically scoped) variables have names which begin and end with an asterisk
sigil *
in what is called the "
earmuff convention". If adhered to, this convention effectively creates a separate namespace for special variables, so that variables intended to be lexical are not accidentally made special.
Lexical scope is useful for several reasons.
Firstly, references to variables and functions can be compiled to efficient machine code, because the run-time environment structure is relatively simple. In many cases it can be optimized to stack storage, so opening and closing lexical scopes has minimal overhead. Even in cases where full closures must be generated, access to the closure's environment is still efficient; typically each variable becomes an offset into a vector of bindings, and so a variable reference becomes a simple load or store instruction with a base-plus-offset
addressing mode.
Secondly, lexical scope (combined with indefinite extent) gives rise to the
lexical closure
In programming languages, a closure, also lexical closure or function closure, is a technique for implementing lexically scoped name binding in a language with first-class functions. Operationally, a closure is a record storing a function toge ...
, which in turn creates a whole paradigm of programming centered around the use of functions being first-class objects, which is at the root of functional programming.
Thirdly, perhaps most importantly, even if lexical closures are not exploited, the use of lexical scope isolates program modules from unwanted interactions. Due to their restricted visibility, lexical variables are private. If one module A binds a lexical variable X, and calls another module B, references to X in B will not accidentally resolve to the X bound in A. B simply has no access to X. For situations in which disciplined interactions through a variable are desirable, Common Lisp provides special variables. Special variables allow for a module A to set up a binding for a variable X which is visible to another module B, called from A. Being able to do this is an advantage, and being able to prevent it from happening is also an advantage; consequently, Common Lisp supports both lexical and
dynamic scope
In computer programming, the scope of a name binding (an association of a name to an entity, such as a variable) is the part of a program where the name binding is valid; that is, where the name can be used to refer to the entity. In other parts ...
.
Macros
A ''
macro
Macro (or MACRO) may refer to:
Science and technology
* Macroscopic, subjects visible to the eye
* Macro photography, a type of close-up photography
* Image macro, a picture with text superimposed
* Monopole, Astrophysics and Cosmic Ray Observat ...
'' in Lisp superficially resembles a function in usage. However, rather than representing an expression which is evaluated, it represents a transformation of the program source code. The macro gets the source it surrounds as arguments, binds them to its parameters and computes a new source form. This new form can also use a macro. The macro expansion is repeated until the new source form does not use a macro. The final computed form is the source code executed at runtime.
Typical uses of macros in Lisp:
* new control structures (example: looping constructs, branching constructs)
* scoping and binding constructs
* simplified syntax for complex and repeated source code
* top-level defining forms with compile-time side-effects
*
data-driven programming
In computer programming, data-driven programming is a programming paradigm in which the program statements describe the data to be matched and the processing required rather than defining a sequence of steps to be taken. Standard examples of dat ...
* embedded domain specific languages (examples:
SQL,
HTML,
Prolog)
* implicit finalization forms
Various standard Common Lisp features also need to be implemented as macros, such as:
* the standard
setf
abstraction, to allow custom compile-time expansions of assignment/access operators
*
with-accessors
,
with-slots
,
with-open-file
and other similar
WITH
macros
* Depending on implementation,
if
or
cond
is a macro built on the other, the special operator;
when
and
unless
consist of macros
* The powerful
loop
domain-specific language
Macros are defined by the ''defmacro'' macro. The special operator ''macrolet'' allows the definition of local (lexically scoped) macros. It is also possible to define macros for symbols using ''define-symbol-macro'' and ''symbol-macrolet''.
Paul Graham's book
On Lisp
''On Lisp: Advanced Techniques for Common Lisp'' is a book by Paul Graham on macro programming in Common Lisp. Published in 1993, it is currently out of print, but can be freely downloaded as a PDF file.
See also
* Anaphoric macro An anaphoric ...
describes the use of macros in Common Lisp in detail.
Doug Hoyte
Doug is a male personal name (or, depending on which definition of "personal name" one uses, part of a personal name). It is sometimes a given name (or "first name"), but more often it is hypocorism (affectionate variation of a personal name) which ...
's book
Let Over Lambda
Let or LET may refer to:
Sports
* Let serve, when the served object in certain racket sports hits the net and lands in the correct service court, such as;
** Let (badminton)
** Let (pickleball)
** Let (tennis)
* Ladies European Tour, the ladie ...
extends the discussion on macros, claiming "Macros are the single greatest advantage that lisp has as a programming language and the single greatest advantage of any programming language." Hoyte provides several examples of iterative development of macros.
Example using a macro to define a new control structure
Macros allow Lisp programmers to create new syntactic forms in the language. One typical use is to create new control structures. The example macro provides an
until
looping construct. The syntax is:
(until test form*)
The macro definition for ''until'':
(defmacro until (test &body body)
(let ((start-tag (gensym "START"))
(end-tag (gensym "END")))
`(tagbody ,start-tag
(when ,test (go ,end-tag))
(progn ,@body)
(go ,start-tag)
,end-tag)))
''tagbody'' is a primitive Common Lisp special operator which provides the ability to name tags and use the ''go'' form to jump to those tags. The backquote ''`'' provides a notation that provides code templates, where the value of forms preceded with a comma are filled in. Forms preceded with comma and at-sign are ''spliced'' in. The tagbody form tests the end condition. If the condition is true, it jumps to the end tag. Otherwise, the provided body code is executed and then it jumps to the start tag.
An example of using the above ''until'' macro:
(until (= (random 10) 0)
(write-line "Hello"))
The code can be expanded using the function ''macroexpand-1''. The expansion for the above example looks like this:
(TAGBODY
#:START1136
(WHEN (ZEROP (RANDOM 10))
(GO #:END1137))
(PROGN (WRITE-LINE "hello"))
(GO #:START1136)
#:END1137)
During macro expansion the value of the variable ''test'' is ''(= (random 10) 0)'' and the value of the variable ''body'' is ''((write-line "Hello"))''. The body is a list of forms.
Symbols are usually automatically upcased. The expansion uses the TAGBODY with two labels. The symbols for these labels are computed by GENSYM and are not interned in any package. Two ''go'' forms use these tags to jump to. Since ''tagbody'' is a primitive operator in Common Lisp (and not a macro), it will not be expanded into something else. The expanded form uses the ''when'' macro, which also will be expanded. Fully expanding a source form is called ''code walking''.
In the fully expanded (''walked'') form, the ''when'' form is replaced by the primitive ''if'':
(TAGBODY
#:START1136
(IF (ZEROP (RANDOM 10))
(PROGN (GO #:END1137))
NIL)
(PROGN (WRITE-LINE "hello"))
(GO #:START1136))
#:END1137)
All macros must be expanded before the source code containing them can be evaluated or compiled normally. Macros can be considered functions that accept and return
S-expressions – similar to
abstract syntax trees, but not limited to those. These functions are invoked before the evaluator or compiler to produce the final source code.
Macros are written in normal Common Lisp, and may use any Common Lisp (or third-party) operator available.
Variable capture and shadowing
Common Lisp macros are capable of what is commonly called ''variable capture'', where symbols in the macro-expansion body coincide with those in the calling context, allowing the programmer to create macros wherein various symbols have special meaning. The term ''variable capture'' is somewhat misleading, because all namespaces are vulnerable to unwanted capture, including the operator and function namespace, the tagbody label namespace, catch tag, condition handler and restart namespaces.
''Variable capture'' can introduce software defects. This happens in one of the following two ways:
* In the first way, a macro expansion can inadvertently make a symbolic reference which the macro writer assumed will resolve in a global namespace, but the code where the macro is expanded happens to provide a local, shadowing definition which steals that reference. Let this be referred to as type 1 capture.
* The second way, type 2 capture, is just the opposite: some of the arguments of the macro are pieces of code supplied by the macro caller, and those pieces of code are written such that they make references to surrounding bindings. However, the macro inserts these pieces of code into an expansion which defines its own bindings that accidentally captures some of these references.
The Scheme dialect of Lisp provides a macro-writing system which provides the referential transparency that eliminates both types of capture problem. This type of macro system is sometimes called "hygienic", in particular by its proponents (who regard macro systems which do not automatically solve this problem as unhygienic).
In Common Lisp, macro hygiene is ensured one of two different ways.
One approach is to use
gensyms: guaranteed-unique symbols which can be used in a macro-expansion without threat of capture. The use of gensyms in a macro definition is a manual chore, but macros can be written which simplify the instantiation and use of gensyms. Gensyms solve type 2 capture easily, but they are not applicable to type 1 capture in the same way, because the macro expansion cannot rename the interfering symbols in the surrounding code which capture its references. Gensyms could be used to provide stable aliases for the global symbols which the macro expansion needs. The macro expansion would use these secret aliases rather than the well-known names, so redefinition of the well-known names would have no ill effect on the macro.
Another approach is to use packages. A macro defined in its own package can simply use internal symbols in that package in its expansion. The use of packages deals with type 1 and type 2 capture.
However, packages don't solve the type 1 capture of references to standard Common Lisp functions and operators. The reason is that the use of packages to solve capture problems revolves around the use of private symbols (symbols in one package, which are not imported into, or otherwise made visible in other packages). Whereas the Common Lisp library symbols are external, and frequently imported into or made visible in user-defined packages.
The following is an example of unwanted capture in the operator namespace, occurring in the expansion of a macro:
;; expansion of UNTIL makes liberal use of DO
(defmacro until (expression &body body)
`(do () (,expression) ,@body))
;; macrolet establishes lexical operator binding for DO
(macrolet ((do (...) ... something else ...))
(until (= (random 10) 0) (write-line "Hello")))
The
until
macro will expand into a form which calls
do
which is intended to refer to the standard Common Lisp macro
do
. However, in this context,
do
may have a completely different meaning, so
until
may not work properly.
Common Lisp solves the problem of the shadowing of standard operators and functions by forbidding their redefinition. Because it redefines the standard operator
do
, the preceding is actually a fragment of non-conforming Common Lisp, which allows implementations to diagnose and reject it.
Condition system
The ''condition system'' is responsible for
exception handling in Common Lisp.
It provides ''conditions'', ''handler''s and ''restart''s. ''Condition''s are objects describing an exceptional situation (for example an error). If a ''condition'' is signaled, the Common Lisp system searches for a ''handler'' for this condition type and calls the handler. The ''handler'' can now search for restarts and use one of these restarts to automatically repair the current problem, using information such as the condition type and any relevant information provided as part of the condition object, and call the appropriate restart function.
These restarts, if unhandled by code, can be presented to users (as part of a user interface, that of a debugger for example), so that the user can select and invoke one of the available restarts. Since the condition handler is called in the context of the error (without unwinding the stack), full error recovery is possible in many cases, where other exception handling systems would have already terminated the current routine. The debugger itself can also be customized or replaced using the
*debugger-hook*
dynamic variable. Code found within ''unwind-protect'' forms such as finalizers will also be executed as appropriate despite the exception.
In the following example (using
Symbolics Genera
Genera is a Commercial software, commercial operating system and integrated development environment for Lisp machines created by Symbolics. It is essentially a Fork (software development), fork of an earlier operating system originating on the Mas ...
) the user tries to open a file in a Lisp function ''test'' called from the Read-Eval-Print-LOOP (
REPL), when the file does not exist. The Lisp system presents four restarts. The user selects the ''Retry OPEN using a different pathname'' restart and enters a different pathname (lispm-init.lisp instead of lispm-int.lisp). The user code does not contain any error handling code. The whole error handling and restart code is provided by the Lisp system, which can handle and repair the error without terminating the user code.
Command: (test ">zippy>lispm-int.lisp")
Error: The file was not found.
For lispm:>zippy>lispm-int.lisp.newest
LMFS:OPEN-LOCAL-LMFS-1
Arg 0: #P"lispm:>zippy>lispm-int.lisp.newest"
s-A, : Retry OPEN of lispm:>zippy>lispm-int.lisp.newest
s-B: Retry OPEN using a different pathname
s-C, : Return to Lisp Top Level in a TELNET server
s-D: Restart process TELNET terminal
-> Retry OPEN using a different pathname
Use what pathname instead zippy>lispm-int.lisp.newest">efault lispm:>zippy>lispm-int.lisp.newest
lispm:>zippy>lispm-init.lisp.newest
...the program continues
Common Lisp Object System (CLOS)
Common Lisp includes a toolkit for
object-oriented programming, the Common Lisp Object System or
CLOS.
Peter Norvig explains how many
Design Patterns
''Design Patterns: Elements of Reusable Object-Oriented Software'' (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword ...
are simpler to implement in a dynamic language with the features of CLOS (Multiple Inheritance, Mixins, Multimethods, Metaclasses, Method combinations, etc.).
Several extensions to Common Lisp for object-oriented programming have been proposed to be included into the ANSI Common Lisp standard, but eventually CLOS was adopted as the standard object-system for Common Lisp. CLOS is a
dynamic object system with
multiple dispatch and
multiple inheritance, and differs radically from the OOP facilities found in static languages such as
C++ or
Java. As a dynamic object system, CLOS allows changes at runtime to generic functions and classes. Methods can be added and removed, classes can be added and redefined, objects can be updated for class changes and the class of objects can be changed.
CLOS has been integrated into ANSI Common Lisp. Generic functions can be used like normal functions and are a first-class data type. Every CLOS class is integrated into the Common Lisp type system. Many Common Lisp types have a corresponding class. There is more potential use of CLOS for Common Lisp. The specification does not say whether conditions are implemented with CLOS. Pathnames and streams could be implemented with CLOS. These further usage possibilities of CLOS for ANSI Common Lisp are not part of the standard. Actual Common Lisp implementations use CLOS for pathnames, streams, input–output, conditions, the implementation of CLOS itself and more.
Compiler and interpreter
A Lisp interpreter directly executes Lisp source code provided as Lisp objects (lists, symbols, numbers, ...) read from s-expressions. A Lisp compiler generates
bytecode
Bytecode (also called portable code or p-code) is a form of instruction set designed for efficient execution by a software interpreter. Unlike human-readable source code, bytecodes are compact numeric codes, constants, and references (norma ...
or
machine code from Lisp source code. Common Lisp allows both individual Lisp functions to be compiled in memory and the compilation of whole files to externally stored compiled code (''fasl'' files).
Several implementations of earlier Lisp dialects provided both an interpreter and a compiler. Unfortunately often the semantics were different. These earlier Lisps implemented lexical scoping in the compiler and dynamic scoping in the interpreter. Common Lisp requires that both the interpreter and compiler use lexical scoping by default. The Common Lisp standard describes both the semantics of the interpreter and a compiler. The compiler can be called using the function ''compile'' for individual functions and using the function ''compile-file'' for files. Common Lisp allows type declarations and provides ways to influence the compiler code generation policy. For the latter various optimization qualities can be given values between 0 (not important) and 3 (most important): ''speed'', ''space'', ''safety'', ''debug'' and ''compilation-speed''.
There is also a function to evaluate Lisp code:
eval
.
eval
takes code as pre-parsed s-expressions and not, like in some other languages, as text strings. This way code can be constructed with the usual Lisp functions for constructing lists and symbols and then this code can be evaluated with the function
eval
. Several Common Lisp implementations (like Clozure CL and SBCL) are implementing
eval
using their compiler. This way code is compiled, even though it is evaluated using the function
eval
.
The file compiler is invoked using the function ''compile-file''. The generated file with compiled code is called a ''fasl'' (from ''fast load'') file. These ''fasl'' files and also source code files can be loaded with the function ''load'' into a running Common Lisp system. Depending on the implementation, the file compiler generates byte-code (for example for the
Java Virtual Machine
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes ...
),
C language code (which then is compiled with a C compiler) or, directly, native code.
Common Lisp implementations can be used interactively, even though the code gets fully compiled. The idea of an
Interpreted language thus does not apply for interactive Common Lisp.
The language makes a distinction between read-time, compile-time, load-time, and run-time, and allows user code to also make this distinction to perform the wanted type of processing at the wanted step.
Some special operators are provided to especially suit interactive development; for instance,
defvar
will only assign a value to its provided variable if it wasn't already bound, while
defparameter
will always perform the assignment. This distinction is useful when interactively evaluating, compiling and loading code in a live image.
Some features are also provided to help writing compilers and interpreters. Symbols consist of first-level objects and are directly manipulable by user code. The
progv
special operator allows to create lexical bindings programmatically, while packages are also manipulable. The Lisp compiler is available at runtime to compile files or individual functions. These make it easy to use Lisp as an intermediate compiler or interpreter for another language.
Code examples
Birthday paradox
The following program calculates the smallest number of people in a room for whom the probability of unique birthdays is less than 50% (the
birthday paradox, where for 1 person the probability is obviously 100%, for 2 it is 364/365, etc.). The answer is 23.
By convention, constants in Common Lisp are enclosed with + characters.
(defconstant +year-size+ 365)
(defun birthday-paradox (probability number-of-people)
(let ((new-probability (* (/ (- +year-size+ number-of-people)
+year-size+)
probability)))
(if (< new-probability 0.5)
(1+ number-of-people)
(birthday-paradox new-probability (1+ number-of-people)))))
Calling the example function using the
REPL (Read Eval Print Loop):
CL-USER > (birthday-paradox 1.0 1)
23
Sorting a list of person objects
We define a class
person
and a method for displaying the name and age of a person.
Next we define a group of persons as a list of
person
objects.
Then we iterate over the sorted list.
(defclass person ()
((name :initarg :name :accessor person-name)
(age :initarg :age :accessor person-age))
(:documentation "The class PERSON with slots NAME and AGE."))
(defmethod display ((object person) stream)
"Displaying a PERSON object to an output stream."
(with-slots (name age) object
(format stream "~a (~a)" name age)))
(defparameter *group*
(list (make-instance 'person :name "Bob" :age 33)
(make-instance 'person :name "Chris" :age 16)
(make-instance 'person :name "Ash" :age 23))
"A list of PERSON objects.")
(dolist (person (sort (copy-list *group*)
#'>
:key #'person-age))
(display person *standard-output*)
(terpri))
It prints the three names with descending age.
Bob (33)
Ash (23)
Chris (16)
Exponentiating by squaring
Use of the LOOP macro is demonstrated:
(defun power (x n)
(loop with result = 1
while (plusp n)
when (oddp n) do (setf result (* result x))
do (setf x (* x x)
n (truncate n 2))
finally (return result)))
Example use:
CL-USER > (power 2 200)
1606938044258990275541962092341162602522202993782792835301376
Compare with the built in exponentiation:
CL-USER > (= (expt 2 200) (power 2 200))
T
Find the list of available shells
WITH-OPEN-FILE is a macro that opens a file and provides a stream. When the form is returning, the file is automatically closed. FUNCALL calls a function object. The LOOP collects all lines that match the predicate.
(defun list-matching-lines (file predicate)
"Returns a list of lines in file, for which the predicate applied to
the line returns T."
(with-open-file (stream file)
(loop for line = (read-line stream nil nil)
while line
when (funcall predicate line)
collect it)))
The function AVAILABLE-SHELLS calls the above function LIST-MATCHING-LINES with a pathname and an anonymous function as the predicate. The predicate returns the pathname of a shell or NIL (if the string is not the filename of a shell).
(defun available-shells (&optional (file #p"/etc/shells"))
(list-matching-lines
file
(lambda (line)
(and (plusp (length line))
(char= (char line 0) #\/)
(pathname
(string-right-trim '(#\space #\tab) line))))))
Example results (on Mac OS X 10.6):
CL-USER > (available-shells)
(#P"/bin/bash" #P"/bin/csh" #P"/bin/ksh" #P"/bin/sh" #P"/bin/tcsh" #P"/bin/zsh")
Comparison with other Lisps
Common Lisp is most frequently compared with, and contrasted to,
Scheme A scheme is a systematic plan for the implementation of a certain idea.
Scheme or schemer may refer to:
Arts and entertainment
* ''The Scheme'' (TV series), a BBC Scotland documentary series
* The Scheme (band), an English pop band
* ''The Schem ...
—if only because they are the two most popular Lisp dialects. Scheme predates CL, and comes not only from the same Lisp tradition but from some of the same engineers—
Guy Steele, with whom
Gerald Jay Sussman designed Scheme, chaired the standards committee for Common Lisp.
Common Lisp is a general-purpose programming language, in contrast to Lisp variants such as
Emacs Lisp and
AutoLISP
AutoLISP is a Dialect (computing), dialect of the programming language Lisp (programming language), Lisp built specifically for use with the full version of AutoCAD and its derivatives, which include ''AutoCAD Map 3D'', ''AutoCAD Architecture'' and ...
which are
extension languages
A scripting language or script language is a programming language that is used to manipulate, customize, and automate the facilities of an existing system. Scripting languages are usually interpreted at runtime rather than compiled.
A scripting ...
embedded in particular products (GNU Emacs and AutoCAD, respectively). Unlike many earlier Lisps, Common Lisp (like
Scheme A scheme is a systematic plan for the implementation of a certain idea.
Scheme or schemer may refer to:
Arts and entertainment
* ''The Scheme'' (TV series), a BBC Scotland documentary series
* The Scheme (band), an English pop band
* ''The Schem ...
) uses lexical variable
scope
Scope or scopes may refer to:
People with the surname
* Jamie Scope (born 1986), English footballer
* John T. Scopes (1900–1970), central figure in the Scopes Trial regarding the teaching of evolution
Arts, media, and entertainment
* Cinem ...
by default for both interpreted and compiled code.
Most of the Lisp systems whose designs contributed to Common Lisp—such as
ZetaLisp
Lisp Machine Lisp is a programming language, a dialect of the language Lisp. A direct descendant of Maclisp, it was initially developed in the mid to late 1970s as the system programming language for the Massachusetts Institute of Technology ( ...
and Franz Lisp—used dynamically
scoped variables in their interpreters and lexically scoped variables in their compilers. Scheme introduced the sole use of lexically scoped variables to Lisp; an inspiration from
ALGOL 68. CL supports dynamically scoped variables as well, but they must be explicitly declared as "special". There are no differences in scoping between ANSI CL interpreters and compilers.
Common Lisp is sometimes termed a ''Lisp-2'' and Scheme a ''Lisp-1'', referring to CL's use of separate namespaces for functions and variables. (In fact, CL has ''many'' namespaces, such as those for go tags, block names, and
loop
keywords). There is a long-standing controversy between CL and Scheme advocates over the tradeoffs involved in multiple namespaces. In Scheme, it is (broadly) necessary to avoid giving variables names which clash with functions; Scheme functions frequently have arguments named
lis
,
lst
, or
lyst
so as not to conflict with the system function
list
. However, in CL it is necessary to explicitly refer to the function namespace when passing a function as an argument—which is also a common occurrence, as in the
sort
example above.
CL also differs from Scheme in its handling of boolean values. Scheme uses the special values #t and #f to represent truth and falsity. CL follows the older Lisp convention of using the symbols T and NIL, with NIL standing also for the empty list. In CL, ''any'' non-NIL value is treated as true by conditionals, such as
if
, whereas in Scheme all non-#f values are treated as true. These conventions allow some operators in both languages to serve both as predicates (answering a boolean-valued question) and as returning a useful value for further computation, but in Scheme the value '() which is equivalent to NIL in Common Lisp evaluates to true in a boolean expression.
Lastly, the Scheme standards documents require
tail-call optimization
In computer science, a tail call is a subroutine call performed as the final action of a procedure. If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recur ...
, which the CL standard does not. Most CL implementations do offer tail-call optimization, although often only when the programmer uses an optimization directive. Nonetheless, common CL coding style does not favor the ubiquitous use of recursion that Scheme style prefers—what a Scheme programmer would express with tail recursion, a CL user would usually express with an iterative expression in
do
,
dolist
,
loop
, or (more recently) with the
iterate
package.
Implementations
See the Category
Common Lisp implementations.
Common Lisp is defined by a specification (like
Ada
Ada may refer to:
Places
Africa
* Ada Foah, a town in Ghana
* Ada (Ghana parliament constituency)
* Ada, Osun, a town in Nigeria
Asia
* Ada, Urmia, a village in West Azerbaijan Province, Iran
* Ada, Karaman, a village in Karaman Province, Tur ...
and
C) rather than by one implementation (like
Perl). There are many implementations, and the standard details areas in which they may validly differ.
In addition, implementations tend to come with extensions, which provide functionality not covered in the standard:
* Interactive Top-Level (REPL)
* Garbage Collection
* Debugger, Stepper and Inspector
* Weak data structures (hash tables)
* Extensible sequences
* Extensible LOOP
* Environment access
* CLOS Meta-object Protocol
* CLOS based extensible streams
* CLOS based Condition System
* Network streams
* Persistent CLOS
* Unicode support
* Foreign-Language Interface (often to C)
* Operating System interface
* Java Interface
* Threads and Multiprocessing
* Application delivery (applications, dynamic libraries)
* Saving of images
Free and open-source software
Free and open-source software (FOSS) is a term used to refer to groups of software consisting of both free software and open-source software where anyone is freely licensed to use, copy, study, and change the software in any way, and the source ...
libraries have been created to support extensions to Common Lisp in a portable way, and are most notably found in the repositories of the Common-Lisp.net and CLOCC (Common Lisp Open Code Collection) projects.
Common Lisp implementations may use any mix of native code compilation, byte code compilation or interpretation. Common Lisp has been designed to support
incremental compilers, file compilers and block compilers. Standard declarations to optimize compilation (such as function inlining or type specialization) are proposed in the language specification. Most Common Lisp implementations compile source code to native
machine code. Some implementations can create (optimized) stand-alone applications. Others compile to interpreted
bytecode
Bytecode (also called portable code or p-code) is a form of instruction set designed for efficient execution by a software interpreter. Unlike human-readable source code, bytecodes are compact numeric codes, constants, and references (norma ...
, which is less efficient than native code, but eases binary-code portability. Some compilers compile Common Lisp code to C code. The misconception that Lisp is a purely interpreted language is most likely because Lisp environments provide an interactive prompt and that code is compiled one-by-one, in an incremental way. With Common Lisp incremental compilation is widely used.
Some
Unix-based implementations (
CLISP
In computing, CLISP is an implementation of the programming language Common Lisp originally developed by Bruno Haible and Michael Stoll for the Atari ST. Today it supports the Unix and Microsoft Windows operating systems.
CLISP includes an inter ...
,
SBCL
Steel Bank Common Lisp (SBCL) is a free Common Lisp implementation that features a high-performance native compiler, Unicode support and threading.
The name "Steel Bank Common Lisp" is a reference to Carnegie Mellon University Common Lisp from ...
) can be used as a
scripting language; that is, invoked by the system transparently in the way that a
Perl or
Unix shell interpreter is.
List of implementations
Commercial implementations
;
Allegro Common Lisp
Allegro Common Lisp is a programming language with an integrated development environment (IDE), developed by Franz Inc. It is a dialect of the language Lisp, a commercial software implementation of the language Common Lisp. Allegro CL provides ...
: for Microsoft Windows, FreeBSD, Linux, Apple macOS and various UNIX variants. Allegro CL provides an
Integrated Development Environment (IDE) (for Windows and Linux) and extensive capabilities for application delivery.
;
Liquid Common Lisp
A liquid is a nearly Compressibility, incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of State of matter#Four fundamental states, the four fund ...
: formerly called Lucid Common Lisp. Only maintenance, no new releases.
;
LispWorks: for Microsoft Windows, FreeBSD, Linux, Apple macOS, iOS, Android and various UNIX variants. LispWorks provides an
Integrated Development Environment (IDE) (available for most platforms, but not for iOS and Android) and extensive capabilities for application delivery.
;
mocl
mocl is a programming language, a Dialect (computing), dialect and Programming language implementation, implementation of the language Lisp (programming language), Lisp named Common Lisp. It is focused on mobile device platforms. It includes a com ...
: for iOS, Android and macOS.
;
Open Genera
Genera is a commercial operating system and integrated development environment for Lisp machines created by Symbolics. It is essentially a fork of an earlier operating system originating on the Massachusetts Institute of Technology (MIT) AI Lab' ...
: for DEC Alpha.
;
Scieneer Common Lisp: which is designed for high-performance scientific computing.
Freely redistributable implementations
; Armed Bear Common Lisp (ABCL) : A CL implementation that runs on the
Java Virtual Machine
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes ...
. It includes a compiler to
Java byte code
In computing, Java bytecode is the bytecode-structured instruction set of the Java virtual machine (JVM), a virtual machine that enables a computer to run programs written in the Java programming language and several other programming languages, ...
, and allows access to Java libraries from CL. It was formerly just a component of the
Armed Bear J Editor
Armed (May, 1941–1964) was an American Thoroughbred gelding race horse who was the American Horse of the Year in 1947 and Champion Older Male Horse in both 1946 and 1947. He was inducted into the National Museum of Racing and Hall of Fame ...
.
;
Clasp
Clasp, clasper or CLASP may refer to:
* Wrist clasp, a dressing accessory
* Folding clasp, a device used to close a watch strap
* Medal bar, an element in military decoration
* Fastener, a hardware device that mechanically joins objects together
* ...
: A LLVM based implementation that seamlessly interoperates with C++ libraries. Runs on several Unix and Unix-like systems (including
macOS).
;
CLISP
In computing, CLISP is an implementation of the programming language Common Lisp originally developed by Bruno Haible and Michael Stoll for the Atari ST. Today it supports the Unix and Microsoft Windows operating systems.
CLISP includes an inter ...
: A bytecode-compiling implementation, portable and runs on several Unix and Unix-like systems (including
macOS), as well as Microsoft Windows and several other systems.
;
Clozure CL (CCL) : Originally a
free and open-source
Free and open-source software (FOSS) is a term used to refer to groups of software consisting of both free software and open-source software where anyone is freely licensed to use, copy, study, and change the software in any way, and the source ...
fork of Macintosh Common Lisp. As that history implies, CCL was written for the Macintosh, but Clozure CL now runs on
macOS,
FreeBSD
FreeBSD is a free and open-source Unix-like operating system descended from the Berkeley Software Distribution (BSD), which was based on Research Unix. The first version of FreeBSD was released in 1993. In 2005, FreeBSD was the most popular ...
,
Linux,
Solaris
Solaris may refer to:
Arts and entertainment Literature, television and film
* ''Solaris'' (novel), a 1961 science fiction novel by Stanisław Lem
** ''Solaris'' (1968 film), directed by Boris Nirenburg
** ''Solaris'' (1972 film), directed by ...
and
Windows. 32 and 64 bit
x86 ports are supported on each platform. Additionally there are Power PC ports for Mac OS and Linux. CCL was previously known as OpenMCL, but that name is no longer used, to avoid confusion with the open source version of Macintosh Common Lisp.
;
CMUCL
CMUCL is a free Common Lisp implementation, originally developed at Carnegie Mellon University.
CMUCL runs on most Unix-like platforms, including Linux and BSD; there is an experimental Windows port as well. Steel Bank Common Lisp is derived f ...
: Originally from
Carnegie Mellon University
Carnegie Mellon University (CMU) is a private research university in Pittsburgh, Pennsylvania. One of its predecessors was established in 1900 by Andrew Carnegie as the Carnegie Technical Schools; it became the Carnegie Institute of Technology ...
, now maintained as
free and open-source software
Free and open-source software (FOSS) is a term used to refer to groups of software consisting of both free software and open-source software where anyone is freely licensed to use, copy, study, and change the software in any way, and the source ...
by a group of volunteers. CMUCL uses a fast native-code compiler. It is available on
Linux and
BSD
The Berkeley Software Distribution or Berkeley Standard Distribution (BSD) is a discontinued operating system based on Research Unix, developed and distributed by the Computer Systems Research Group (CSRG) at the University of California, Berk ...
for Intel x86;
Linux for Alpha;
macOS for Intel x86 and PowerPC; and Solaris, IRIX, and HP-UX on their native platforms.
;
Corman Common Lisp
Common Lisp (CL) is a dialect of the Lisp programming language, published in ANSI standard document ''ANSI INCITS 226-1994 (S20018)'' (formerly ''X3.226-1994 (R1999)''). The Common Lisp HyperSpec, a hyperlinked HTML version, has been derived fro ...
: for Microsoft Windows. In January 2015 Corman Lisp has been published under MIT license.
;
Embeddable Common Lisp
Embeddable Common Lisp (ECL) is a small implementation of the ANSI Common Lisp programming language that can be used stand-alone or embedded in extant applications written in C. It creates OS-native executables and libraries (i.e. Executable and ...
(ECL) : ECL includes a bytecode interpreter and compiler. It can also compile Lisp code to machine code via a C compiler. ECL then compiles Lisp code to C, compiles the C code with a C compiler and can then load the resulting machine code. It is also possible to embed ECL in
C programs, and C code into Common Lisp programs.
;
GNU Common Lisp
GNU Common Lisp (GCL) is the GNU Project's ANSI Common Lisp compiler, an evolutionary development of Kyoto Common Lisp. It produces native object code by first generating C code and then calling a C compiler.
GCL is the implementation of choice ...
(GCL) : The
GNU Project's Lisp compiler. Not yet fully ANSI-compliant, GCL is however the implementation of choice for several large projects including the mathematical tools
Maxima,
AXIOM
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
and (historically)
ACL2
ACL2 ("A Computational Logic for Applicative Common Lisp") is a software system consisting of a programming language, created by Timothy Still it was an extensible theory in a first-order logic, and an automated theorem prover. ACL2 is designed to ...
. GCL runs on
Linux under eleven different architectures, and also under Windows, Solaris, and
FreeBSD
FreeBSD is a free and open-source Unix-like operating system descended from the Berkeley Software Distribution (BSD), which was based on Research Unix. The first version of FreeBSD was released in 1993. In 2005, FreeBSD was the most popular ...
.
;
Macintosh Common Lisp (MCL) : Version 5.2 for Apple Macintosh computers with a PowerPC processor running Mac OS X is open source. RMCL (based on MCL 5.2) runs on Intel-based Apple Macintosh computers using the Rosetta binary translator from Apple.
;
ManKai Common Lisp (MKCL) : A branch of
ECL. MKCL emphasises reliability, stability and overall code quality through a heavily reworked, natively multi-threaded, runtime system. On Linux, MKCL features a fully POSIX compliant runtime system.
; Movitz : Implements a Lisp environment for
x86 computers without relying on any underlying OS.
;
Poplog
Poplog is an open source, reflective, incrementally compiled software development environment for the programming languages POP-11, Common Lisp, Prolog, and Standard ML, originally created in the UK for teaching and research in Artificial Intelli ...
: Poplog implements a version of CL, with
POP-11
POP-11 is a reflective, incrementally compiled programming language with many of the features of an interpreted language. It is the core language of the Poplog programming environment developed originally by the University of Sussex, and recentl ...
, and optionally
Prolog, and
Standard ML
Standard ML (SML) is a general-purpose, modular, functional programming language with compile-time type checking and type inference. It is popular among compiler writers and programming language researchers, as well as in the development of the ...
(SML), allowing mixed language programming. For all, the implementation language is POP-11, which is compiled incrementally. It also has an integrated
Emacs
Emacs , originally named EMACS (an acronym for "Editor MACroS"), is a family of text editors that are characterized by their extensibility. The manual for the most widely used variant, GNU Emacs, describes it as "the extensible, customizable, s ...
-like editor that communicates with the compiler.
;
Steel Bank Common Lisp
Steel Bank Common Lisp (SBCL) is a free Common Lisp implementation that features a high-performance native compiler, Unicode support and threading.
The name "Steel Bank Common Lisp" is a reference to Carnegie Mellon University Common Lisp fro ...
(SBCL) : A branch from
CMUCL
CMUCL is a free Common Lisp implementation, originally developed at Carnegie Mellon University.
CMUCL runs on most Unix-like platforms, including Linux and BSD; there is an experimental Windows port as well. Steel Bank Common Lisp is derived f ...
. "Broadly speaking, SBCL is distinguished from CMU CL by a greater emphasis on maintainability." SBCL runs on the platforms CMUCL does, except HP/UX; in addition, it runs on Linux for AMD64, PowerPC, SPARC, MIPS, Windows x86 and has experimental support for running on Windows AMD64. SBCL does not use an interpreter by default; all expressions are compiled to native code unless the user switches the interpreter on. The SBCL compiler generates fast native code according to a previous version of
The Computer Language Benchmarks Game.
;
Ufasoft Common Lisp: port of CLISP for windows platform with core written in C++.
Other implementations
; Austin Kyoto Common Lisp : an evolution of
Kyoto Common Lisp by
Bill Schelter
William Frederick Schelter (1947 – July 30, 2001) was a professor of mathematics at The University of Texas at Austin and a Lisp developer and programmer. Schelter is credited with the development of the GNU Common Lisp (GCL) implementation ...
; Butterfly Common Lisp : an implementation written in Scheme for the
BBN Butterfly The BBN Butterfly was a massively parallel computer built by Bolt, Beranek and Newman in the 1980s. It was named for the "butterfly" multi-stage switching network around which it was built. Each machine had up to 512 CPUs, each with local memory, ...
multi-processor computer
; CLICC : a Common Lisp to C compiler
; CLOE : Common Lisp for PCs by
Symbolics
Symbolics was a computer manufacturer Symbolics, Inc., and a privately held company that acquired the assets of the former company and continues to sell and maintain the Open Genera Lisp system and the Macsyma computer algebra system.
; Codemist Common Lisp : used for the commercial version of the computer algebra system Axiom
; ExperCommon Lisp : an early implementation for the Apple Macintosh by ExperTelligence
;
Golden Common Lisp
Golden means made of, or relating to gold.
Golden may also refer to:
Places United Kingdom
*Golden, in the parish of Probus, Cornwall
*Golden Cap, Dorset
* Golden Square, Soho, London
*Golden Valley, a valley on the River Frome in Gloucestersh ...
: an implementation for the PC by GoldHill Inc.
; Ibuki Common Lisp : a commercialized version of Kyoto Common Lisp
;
Kyoto Common Lisp: the first Common Lisp compiler that used C as a target language. GCL, ECL and MKCL originate from this Common Lisp implementation.
; L : a small version of Common Lisp for embedded systems developed by IS Robotics, now iRobot
;
Lisp Machines (from
Symbolics
Symbolics was a computer manufacturer Symbolics, Inc., and a privately held company that acquired the assets of the former company and continues to sell and maintain the Open Genera Lisp system and the Macsyma computer algebra system. , TI and Xerox): provided implementations of Common Lisp in addition to their native Lisp dialect (Lisp Machine Lisp or Interlisp). CLOS was also available. Symbolics provides an enhanced version Common Lisp.
; Procyon Common Lisp : an implementation for Windows and Mac OS, used by Franz for their Windows port of Allegro CL
; Star Sapphire Common LISP : an implementation for the PC
;
SubL: a variant of Common Lisp used for the implementation of the
Cyc knowledge-based system
; Top Level Common Lisp : an early implementation for concurrent execution
; WCL : a shared library implementation
;
VAX Common Lisp VAX LISP was an implementation of Common Lisp for VMS and ULTRIX on 32-bit VAXs. It was the first Common Lisp to be written for non- Lisp machines.pg 72/294 of Gabriel 1985 It was initially boot-strapped from Carnegie Mellon University's Spice Lisp ...
:
Digital Equipment Corporation's implementation that ran on
VAX systems running
VMS #REDIRECT VMS
{{redirect category shell, {{R from other capitalisation{{R from ambiguous page ...
or
ULTRIX
Ultrix (officially all-caps ULTRIX) is the brand name of Digital Equipment Corporation's (DEC) discontinued native Unix operating systems for the PDP-11, VAX, MicroVAX and DECstations.
History
The initial development of Unix occurred on DEC equip ...
; XLISP : an implementation written by David Betz
Applications
Common Lisp is used to develop research applications (often in
Artificial Intelligence), for rapid development of prototypes or for deployed applications.
Common Lisp is used in many commercial applications, including the
Yahoo! Store web-commerce site, which originally involved
Paul Graham and was later rewritten in
C++ and
Perl. Other notable examples include:
*
ACT-R, a cognitive architecture used in a large number of research projects.
* Authorizer's Assistant, a large rule-based system used by American Express, analyzing credit requests.
*
Cyc, a long running project to create a knowledge-based system that provides a huge amount of common sense knowledge.
*
Gensym G2, a real-time expert system and
business rules engine
* Genworks GDL, based on the open-source Gendl kernel.
* The development environment for the ''
Jak and Daxter'' video game series, developed by
Naughty Dog.
*
ITA Software's low fare search engine, used by travel websites such as
Orbitz and
Kayak.com
Kayak (styled as KAYAK) is an American online travel agency and metasearch engine owned and operated by Booking Holdings.
Kayak's website and mobile apps are currently available in over 18 languages and more than 30 countries, including the Un ...
and airlines such as
American Airlines,
Continental Airlines
Continental Airlines, simply known as Continental, was a major United States airline founded in 1934 and eventually headquartered in Houston, Texas. It had ownership interests and brand partnerships with several carriers.
Continental started o ...
and
US Airways.
*
Mirai, a 3D graphics suite. It was used to animate the face of
Gollum in the movie ''
Lord of the Rings: The Two Towers''.
* Opusmodus is a music composition system based on Common Lisp, used in
Computer assisted composition
Computer music is the application of computing technology in music composition, to help human composers create new music or to have computers independently create music, such as with algorithmic composition programs. It includes the theory and ap ...
.
*
Prototype Verification System (PVS), a mechanized environment for formal specification and verification.
* PWGL is a sophisticated visual programming environment based on Common Lisp, used in
Computer assisted composition
Computer music is the application of computing technology in music composition, to help human composers create new music or to have computers independently create music, such as with algorithmic composition programs. It includes the theory and ap ...
and sound synthesis.
* Piano, a complete aircraft analysis suite, written in Common Lisp,
used by companies like
Boeing,
Airbus, and
Northrop Grumman.
*
Grammarly
Grammarly is an American cloud-based typing assistant. It reviews spelling, grammar, punctuation, clarity, engagement, and delivery mistakes in English texts, detects plagiarism, and suggests replacements for the identified errors. It also all ...
, an English-language writing-enhancement platform, has its core grammar engine written in Common Lisp.
* The
Dynamic Analysis and Replanning Tool (DART), which is said to alone have paid back during the years from 1991 to 1995 for all thirty years of
DARPA investments in AI research.
*
NASA's
Jet Propulsion Lab's "
Deep Space 1", an award-winning Common Lisp program for autopiloting the
Deep Space One
''Deep Space 1'' (DS1) was a NASA technology demonstration spacecraft which flew by an asteroid and a comet. It was part of the New Millennium Program, dedicated to testing advanced technologies.
Launched on 24 October 1998, the ''Deep Space 1 ...
spaceship.
* SigLab, a Common Lisp platform for signal processing used in missile defense, built by
Raytheon.
* NASA's
Mars Pathfinder Mission Planning System.
* SPIKE, a scheduling system for Earth or space based observatories and satellites, notably the
Hubble Space Telescope, written in Common Lisp.
* Common Lisp has been used for prototyping the garbage collector of Microsoft's
.NET Common Language Runtime
The Common Language Runtime (CLR), the virtual machine component of Microsoft .NET Framework, manages the execution of .NET programs. Just-in-time compilation converts the managed code (compiled intermediate language code) into machine instructio ...
.
* The original version of
Reddit, though the developers later switched to
Python due to the lack of libraries for Common Lisp, according to an official blog post by Reddit co-founder
Steve Huffman.
There also exist open-source applications written in Common Lisp, such as:
*
ACL2
ACL2 ("A Computational Logic for Applicative Common Lisp") is a software system consisting of a programming language, created by Timothy Still it was an extensible theory in a first-order logic, and an automated theorem prover. ACL2 is designed to ...
, a full-featured
automated theorem prover
Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a maj ...
for an
applicative variant of Common Lisp.
*
Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
, a sophisticated
computer algebra system.
*
Maxima, a sophisticated
computer algebra system, based on Macsyma.
*
OpenMusic, an object-oriented visual programming environment based on Common Lisp, used in
Computer assisted composition
Computer music is the application of computing technology in music composition, to help human composers create new music or to have computers independently create music, such as with algorithmic composition programs. It includes the theory and ap ...
.
* Pgloader, a data loader for
PostgreSQL
PostgreSQL (, ), also known as Postgres, is a free and open-source relational database management system (RDBMS) emphasizing extensibility and SQL compliance. It was originally named POSTGRES, referring to its origins as a successor to the In ...
, which was re-written from Python to Common Lisp.
*
Stumpwm, a tiling, keyboard driven X11 Window Manager written entirely in Common Lisp.
See also
*''
Common Lisp the Language''
*''
On Lisp
''On Lisp: Advanced Techniques for Common Lisp'' is a book by Paul Graham on macro programming in Common Lisp. Published in 1993, it is currently out of print, but can be freely downloaded as a PDF file.
See also
* Anaphoric macro An anaphoric ...
''
*''
Practical Common Lisp
''Practical Common Lisp'' is an introductory book on the programming language Common Lisp by Peter Seibel. It features a fairly complete introduction to the language interspersed with practical example chapters, which show developing various pieces ...
''
References
Bibliography
A chronological list of books published (or about to be published) about Common Lisp (the language) or about programming with Common Lisp (especially AI programming).
*
Guy L. Steele
Guy Lewis Steele Jr. (; born October 2, 1954) is an American computer scientist who has played an important role in designing and documenting several computer programming languages and technical standards.
Biography
Steele was born in Missouri ...
: ''Common Lisp the Language, 1st Edition'', Digital Press, 1984,
*
Rodney Allen Brooks
Rodney Allen Brooks (born 30 December 1954) is an Australian roboticist, Fellow of the Australian Academy of Science, author, and robotics entrepreneur, most known for popularizing the actionist approach to robotics. He was a Panasonic Profes ...
: ''Programming in Common Lisp'', John Wiley and Sons Inc, 1985,
*
Richard P. Gabriel
Richard P. Gabriel (born 1949) is an American computer scientist known for his work in computing related to the programming language Lisp, and especially Common Lisp. His best known work was a 1990 essay "Lisp: Good News, Bad News, How to Win Bi ...
: ''Performance and Evaluation of Lisp Systems'', The MIT Press, 1985,
PDF*
Robert Wilensky: ''Common LISPcraft'', W.W. Norton & Co., 1986,
*
Eugene Charniak,
Christopher K. Riesbeck
Christopher is the English version of a Europe-wide name derived from the Greek name Χριστόφορος (''Christophoros'' or '' Christoforos''). The constituent parts are Χριστός (''Christós''), "Christ" or "Anointed", and φέρει ...
,
Drew V. McDermott
Drew may refer to:
__NOTOC__ Places
;In the United States
* Drew, Georgia, an unincorporated community
* Drew, Mississippi, a city
* Drew, Missouri, an unincorporated community
* Drew, Oregon, an unincorporated community
* Drew County, Arkansas
...
,
James R. Meehan
James is a common English language surname and given name:
*James (name), the typically masculine first name James
* James (surname), various people with the last name James
James or James City may also refer to:
People
* King James (disambiguat ...
: ''Artificial Intelligence Programming, 2nd Edition'', Lawrence Erlbaum, 1987,
*
Wendy L. Milner
Wendy is a given name now generally given to girls in English-speaking countries.
In Britain, Wendy appeared as a masculine name in a parish record in 1615. It was also used as a surname in Britain from at least the 17th century. Its popularity ...
: ''Common Lisp: A Tutorial'', Prentice Hall, 1987,
*
Deborah G. Tatar
According to the Book of Judges, Deborah ( he, דְּבוֹרָה, ''Dəḇōrā'', "bee") was a prophetess of the God of the Israelites, the fourth Judge of pre-monarchic Israel and the only female judge mentioned in the Bible. Many scholars c ...
: ''A Programmer's Guide to Common Lisp'', Longman Higher Education, 1987,
*
Taiichi Yuasa
Taiichi (written: 泰一 or 耐一) is a masculine Japanese given name
A given name (also known as a forename or first name) is the part of a personal name quoted in that identifies a person, potentially with a middle name as well, and diff ...
,
Masami Hagiya
is a common Japanese given name and can be given to either sex.
Possible writings
*惟美, meaning "Considerate beauty"
*真己, meaning "True self" or "Truth, Snake"
*昌美, meaning "Prosperous beauty"
*雅美, meaning "Gracious beauty"
*� ...
: ''Introduction to Common Lisp'', Elsevier Ltd, 1987,
*
Christian Queinnec
Christians () are people who follow or adhere to Christianity, a monotheistic Abrahamic religion based on the life and teachings of Jesus Christ. The words ''Christ'' and ''Christian'' derive from the Koine Greek title ''Christós'' (Χρισ ...
,
Jerome Chailloux
Jerome (; la, Eusebius Sophronius Hieronymus; grc-gre, Εὐσέβιος Σωφρόνιος Ἱερώνυμος; – 30 September 420), also known as Jerome of Stridon, was a Christian priest, confessor, theologian, and historian; he is comm ...
: ''Lisp Evolution and Standardization'', Ios Pr Inc., 1988,
*
Taiichi Yuasa
Taiichi (written: 泰一 or 耐一) is a masculine Japanese given name
A given name (also known as a forename or first name) is the part of a personal name quoted in that identifies a person, potentially with a middle name as well, and diff ...
,
Richard Weyhrauch
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong ...
,
Yasuko Kitajima
Yasuko (written: , , , , , , , , or ) is a feminine Japanese given name. Notable people with the name include:
*, Japanese empress
*, Japanese manga artist
*, Japanese swimmer
*, Japanese empress consort
*Yasuko Harada (原田康子, 19282009), J ...
: ''Common Lisp Drill'', Academic Press Inc, 1988,
*
Wade L. Hennessey
Wade, WADE, or Wades may refer to:
Places in the United States
* Wade, California, a former settlement
* Wade, Maine, a town
* Wade, Mississippi, a census-designated place
* Wade, North Carolina, a town
* Wade, Ohio, an unincorporated communi ...
: ''Common Lisp'', McGraw-Hill Inc., 1989,
*
Tony Hasemer
Tony may refer to:
People and fictional characters
* Tony (given name), including a list of people and fictional characters
* Gregory Tony (born 1978), American law enforcement officer
* Motu Tony (born 1981), New Zealand international rugby leagu ...
,
John Dominque
John is a common English name and surname:
* John (given name)
* John (surname)
John may also refer to:
New Testament
Works
* Gospel of John, a title often shortened to John
* First Epistle of John, often shortened to 1 John
* Second E ...
: ''Common Lisp Programming for Artificial Intelligence'', Addison-Wesley Educational Publishers Inc, 1989,
*
Sonya E. Keene
Sonia is a feminine given name in many areas of the world including the West, Russia, Iran, and South Asia. Sonia and its variant spellings Sonja and Sonya are derived from the Russian hypocoristic ''Sonya'', an abbreviation of '' Sofiya'' (Greek ' ...
: ''Object-Oriented Programming in Common Lisp: A Programmer's Guide to CLOS'', Addison-Wesley, 1989,
*
David Jay Steele
David (; , "beloved one") (traditional spelling), , ''Dāwūd''; grc-koi, Δαυΐδ, Dauíd; la, Davidus, David; gez , ዳዊት, ''Dawit''; xcl, Դաւիթ, ''Dawitʿ''; cu, Давíдъ, ''Davidŭ''; possibly meaning "beloved one". w ...
: ''Golden Common Lisp: A Hands-On Approach'', Addison Wesley, 1989,
*
David S. Touretzky
David S. Touretzky is a research professor in the Computer Science Department and the Center for the Neural Basis of Cognition at Carnegie Mellon University. He received a BA in Computer Science at Rutgers University in 1978, and earned a master's ...
: ''Common Lisp: A Gentle Introduction to Symbolic Computation'', Benjamin-Cummings, 1989,
Web/PDFDover reprint (2013)
*
Christopher K. Riesbeck
Christopher is the English version of a Europe-wide name derived from the Greek name Χριστόφορος (''Christophoros'' or '' Christoforos''). The constituent parts are Χριστός (''Christós''), "Christ" or "Anointed", and φέρει ...
,
Roger C. Schank
Roger Carl Schank (born 1946) is an American artificial intelligence theorist, cognitive psychologist, learning scientist, educational reformer, and entrepreneur.
Beginning in the late 1960s, he pioneered conceptual dependency theory (within the ...
: ''Inside Case-Based Reasoning'', Lawrence Erlbaum, 1989,
*
Patrick Winston,
Berthold Horn: ''Lisp, 3rd Edition'', Addison-Wesley, 1989,
Web*
Gerard Gazdar
Gerard is a masculine forename of Proto-Germanic language, Proto-Germanic origin, variations of which exist in many Germanic and Romance languages. Like many other Germanic name, early Germanic names, it is dithematic, consisting of two meaningfu ...
,
Chris Mellish
Chris is a short form of various names including Christopher, Christian, Christina, Christine, and Christos. Chris is also used as a name in its own right, however it is not as common.
People with the given name
*Chris Abani (born 1966), Nige ...
: ''Natural Language Processing in LISP: An Introduction to Computational Linguistics'', Addison-Wesley Longman Publishing Co., 1990,
*
Patrick R. Harrison Patrick may refer to:
*Patrick (given name), list of people and fictional characters with this name
*Patrick (surname), list of people with this name
People
*Saint Patrick (c. 385–c. 461), Christian saint
*Gilla Pátraic (died 1084), Patrick or ...
: ''Common Lisp and Artificial Intelligence'', Prentice Hall PTR, 1990,
*
Timothy Koschmann
Timothy is a masculine name. It comes from the Greek name ( Timόtheos) meaning "honouring God", "in God's honour", or "honoured by God". Timothy (and its variations) is a common name in several countries.
People Given name
* Timothy (given name) ...
: ''The Common Lisp Companion'', John Wiley & Sons, 1990,
*
W. Richard Stark W. may refer to:
* SoHo (Australian TV channel) (previously W.), an Australian pay television channel
* ''W.'' (film), a 2008 American biographical drama film based on the life of George W. Bush
* "W.", the fifth track from Codeine's 1992 EP '' B ...
: ''LISP, Lore, and Logic'', Springer Verlag New York Inc., 1990,
PDF*
Molly M. Miller
Molly, Mollie or mollies may refer to:
Animals
* ''Poecilia'', a genus of fishes
** ''Poecilia sphenops'', a fish species
* A female mule (horse–donkey hybrid)
People
* Molly (name) or Mollie, a female given name, including a list of persons ...
,
Eric Benson
The given name Eric, Erich, Erikk, Erik, Erick, or Eirik is derived from the Old Norse name ''Eiríkr'' (or ''Eríkr'' in Old East Norse due to monophthongization).
The first element, ''ei-'' may be derived from the older Proto-Norse ''* ain ...
: ''Lisp Style & Design'', Digital Press, 1990,
*
Guy L. Steele
Guy Lewis Steele Jr. (; born October 2, 1954) is an American computer scientist who has played an important role in designing and documenting several computer programming languages and technical standards.
Biography
Steele was born in Missouri ...
: ''
Common Lisp the Language, 2nd Edition'', Digital Press, 1990,
Web* Robin Jones,
Clive Maynard
Clive is a name. People and fictional characters with the name include:
People Given name
* Clive Allen (born 1961), English football player
* Clive Anderson (born 1952), British television, radio presenter, comedy writer and former barrister
* ...
, Ian Stewart: ''The Art of Lisp Programming'', Springer Verlag New York Inc., 1990,
PDF*
Steven L. Tanimoto
Stephen or Steven is a common English given name, first name. It is particularly significant to Christianity, Christians, as it belonged to Saint Stephen ( grc-gre, Στέφανος ), an early disciple and deacon who, according to the Book of Ac ...
: ''The Elements of Artificial Intelligence Using Common Lisp'', Computer Science Press, 1990,
*
Peter Lee Peter Lee may refer to:
*Peter Lee (bishop of Christ the King) (born 1947), England-born Anglican bishop, working in South Africa
*Peter Lee (bishop of Virginia) (born 1938), American bishop of the Episcopal Church
*Peter Lee (chess player) (born 19 ...
: ''Topics in Advanced Language Implementation'', The MIT Press, 1991,
*
John H. Riley
John H. Riley (January 19, 1947 – March 6, 1994) was an American Lawyer, attorney and railroad transportation administrator.
Early life and education
Riley was born in New York City and raised in Danbury, Connecticut. He earned a Bachelor of ...
: ''A Common Lisp Workbook'', Prentice Hall, 1991,
*
Peter Norvig: ''Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp'', Morgan Kaufmann, 1991,
Web*
Gregor Kiczales,
Jim des Rivieres
Jim or JIM may refer to:
* Jim (given name), a given name
* Jim, a diminutive form of the given name James
* Jim, a short form of the given name Jimmy
* OPCW-UN Joint Investigative Mechanism
* ''Jim'' (comics), a series by Jim Woodring
* ''Jim' ...
,
Daniel G. Bobrow
Daniel Gureasko Bobrow (29 November 1935 – 20 March 2017) was an American computer scientist who created an oft-cited artificial intelligence program STUDENT (computer program), STUDENT, with which he earned his PhD., worked at BBN Technologies ( ...
: ''The Art of the Metaobject Protocol'', The MIT Press, 1991,
*
Jo A. Lawless
Jo, jo, JO, or J.O. may refer to:
Arts and entertainment
* ''Jo'' (film), a 1972 French comedy
* ''Jo'' (TV series), a French TV series
*"Jo", a song by Goldfrapp from ''Tales of Us''
*"Jo", a song by Mr. Oizo from ''Lambs Anger''
* Jo a fictio ...
,
Molly M. Miller
Molly, Mollie or mollies may refer to:
Animals
* ''Poecilia'', a genus of fishes
** ''Poecilia sphenops'', a fish species
* A female mule (horse–donkey hybrid)
People
* Molly (name) or Mollie, a female given name, including a list of persons ...
: ''Understanding CLOS: The Common Lisp Object System'', Digital Press, 1991,
* Mark Watson: ''Common Lisp Modules: Artificial Intelligence in the Era of Neural Networks and Chaos Theory'', Springer Verlag New York Inc., 1991,
PDF*
James L. Noyes
James is a common English language surname and given name:
*James (name), the typically masculine first name James
* James (surname), various people with the last name James
James or James City may also refer to:
People
* King James (disambiguat ...
: ''Artificial Intelligence with Common Lisp: Fundamentals of Symbolic and Numeric Processing'', Jones & Bartlett Pub, 1992,
*
Stuart C. Shapiro
Stuart may refer to:
Names
*Stuart (name), a given name and surname (and list of people with the name) Automobile
*Stuart (automobile)
Places
Australia Generally
*Stuart Highway, connecting South Australia and the Northern Territory
Norther ...
: ''COMMON LISP: An Interactive Approach'', Computer Science Press, 1992,
Web/PDF*
Kenneth D. Forbus
Kenneth D. "Ken" Forbus is an American computer scientist working as the Walter P. Murphy Professor of Computer Science and Professor of Education at Northwestern University.
Education
Forbus earned a Bachelor of Science in computer science, Ma ...
,
Johan de Kleer Johan
* Johan (given name)
* ''Johan'' (film), a 1921 Swedish film directed by Mauritz Stiller
* Johan (band), a Dutch pop-group
** ''Johan'' (album), a 1996 album by the group
* Johan Peninsula, Ellesmere Island, Nunavut, Canada
* Jo-Han
Jo-H ...
: ''Building Problem Solvers'', The MIT Press, 1993,
*
Andreas Paepcke
Andreas ( el, Ἀνδρέας) is a name usually given to males in Austria, Greece, Cyprus, Denmark, Armenia, Estonia, Ethiopia, Eritrea, Finland, Flanders, Germany, Norway, Sweden, Switzerland, Romania, the Netherlands, and Indonesia. The name ...
: ''Object-Oriented Programming: The CLOS Perspective'', The MIT Press, 1993,
*
Paul Graham: ''
On Lisp
''On Lisp: Advanced Techniques for Common Lisp'' is a book by Paul Graham on macro programming in Common Lisp. Published in 1993, it is currently out of print, but can be freely downloaded as a PDF file.
See also
* Anaphoric macro An anaphoric ...
'', Prentice Hall, 1993,
Web/PDF*
Paul Graham: ''ANSI Common Lisp'', Prentice Hall, 1995,
*
Otto Mayer
Otto is a masculine German given name and a Otto (surname), surname. It originates as an Old High German short form (variants ''Audo'', ''Odo'', ''Udo'') of Germanic names beginning in ''aud-'', an element meaning "wealth, prosperity".
The name ...
: ''Programmieren in Common Lisp'', German, Spektrum Akademischer Verlag, 1995,
*
Stephen Slade
Stephen Slade is an American eye surgeon who performed the first LASIK
LASIK or Lasik (''laser-assisted in situ keratomileusis''), commonly referred to as laser eye surgery or laser vision correction, is a type of refractive surgery for the c ...
: ''Object-Oriented Common Lisp'', Prentice Hall, 1997,
*
Richard P. Gabriel
Richard P. Gabriel (born 1949) is an American computer scientist known for his work in computing related to the programming language Lisp, and especially Common Lisp. His best known work was a 1990 essay "Lisp: Good News, Bad News, How to Win Bi ...
: ''Patterns of Software: Tales from the Software Community'', Oxford University Press, 1998,
PDF*
Taiichi Yuasa
Taiichi (written: 泰一 or 耐一) is a masculine Japanese given name
A given name (also known as a forename or first name) is the part of a personal name quoted in that identifies a person, potentially with a middle name as well, and diff ...
,
Hiroshi G. Okuno
is a common masculine Japanese given name. It can also be transliterated as Hirosi.
Possible writings
Hiroshi can be written using different kanji characters and can mean:
*浩, "meaning"
*汎
*弘,
*宏,
*寛,
*洋,
*博,
*博一,
*博司,
...
: ''Advanced Lisp Technology'', CRC, 2002,
*
David B. Lamkins
David (; , "beloved one") (traditional spelling), , ''Dāwūd''; grc-koi, Δαυΐδ, Dauíd; la, Davidus, David; gez , ዳዊት, ''Dawit''; xcl, Դաւիթ, ''Dawitʿ''; cu, Давíдъ, ''Davidŭ''; possibly meaning "beloved one". w ...
: ''Successful Lisp: How to Understand and Use Common Lisp'', bookfix.com, 2004.
Web*
Peter Seibel
Peter may refer to:
People
* List of people named Peter, a list of people and fictional characters with the given name
* Peter (given name)
** Saint Peter (died 60s), apostle of Jesus, leader of the early Christian Church
* Peter (surname), a sur ...
: ''
Practical Common Lisp
''Practical Common Lisp'' is an introductory book on the programming language Common Lisp by Peter Seibel. It features a fairly complete introduction to the language interspersed with practical example chapters, which show developing various pieces ...
'', Apress, 2005.
Web*
Doug Hoyte
Doug is a male personal name (or, depending on which definition of "personal name" one uses, part of a personal name). It is sometimes a given name (or "first name"), but more often it is hypocorism (affectionate variation of a personal name) which ...
: ''Let Over Lambda'', Lulu.com, 2008,
Web*
George F. Luger
George may refer to:
People
* George (given name)
* George (surname)
* George (singer), American-Canadian singer George Nozuka, known by the mononym George
* George Washington, First President of the United States
* George W. Bush, 43rd President ...
,
William A. Stubblefield
William is a masculine given name of Norman French origin.Hanks, Hardcastle and Hodges, ''Oxford Dictionary of First Names'', Oxford University Press, 2nd edition, , p. 276. It became very popular in the English language after the Norman conques ...
: ''AI Algorithms, Data Structures, and Idioms in Prolog, Lisp and Java'', Addison Wesley, 2008,
PDF*
Conrad Barski
Conrad may refer to:
People
* Conrad (name)
Places
United States
* Conrad, Illinois, an unincorporated community
* Conrad, Indiana, an unincorporated community
* Conrad, Iowa, a city
* Conrad, Montana, a city
* Conrad Glacier, Washington
...
: ''Land of Lisp: Learn to program in Lisp, one game at a time!'', No Starch Press, 2010,
Web*
Pavel Penev
Pavel (Bulgarian, Russian, Serbian and Macedonian: Павел, Czech, Slovene, Romanian: Pavel, Polish: Paweł, Ukrainian: Павло, Pavlo) is a male given name. It is a Slavic cognate of the name Paul (derived from the Greek Pavlos). Pa ...
: ''Lisp Web Tales'', Leanpub, 2013
Web*
Edmund Weitz
Edmund is a masculine given name or surname in the English language. The name is derived from the Old English elements ''ēad'', meaning "prosperity" or "riches", and ''mund'', meaning "protector".
Persons named Edmund include:
People Kings and ...
: ''Common Lisp Recipes'', Apress, 2015,
Web*
Patrick M. Krusenotto Patrick may refer to:
*Patrick (given name), list of people and fictional characters with this name
*Patrick (surname), list of people with this name
People
*Saint Patrick (c. 385–c. 461), Christian saint
* Gilla Pátraic (died 1084), Patrick o ...
: ''Funktionale Programmierung und Metaprogrammierung, Interaktiv in Common Lisp'', Springer Fachmedien Wiesbaden 2016,
Web
External links
Quicklisp- A very popular and high quality library manager for Common Lisp
* Th
Awesome CLlist, a curated list of Common Lisp frameworks and libraries.
* Th
Common Lisp Cookbook a collaborative project.
* Th
CLiki a Wiki for
free and open-source
Free and open-source software (FOSS) is a term used to refer to groups of software consisting of both free software and open-source software where anyone is freely licensed to use, copy, study, and change the software in any way, and the source ...
Common Lisp systems running on Unix-like systems.
* One of the main repositories for free Common Lisp for software i
Common-Lisp.net
lisp-lang.orghas documentation and a showcase of success stories.
* An overview of the history of Common Lisp:
Common Lisp Quick Reference– a compact overview of the Common Lisp standard language.
Planet LispArticles about Common Lisp.
Quickdocssummarizes documentation and dependency information for many Quicklisp projects.
{{Authority control
Articles with example Lisp (programming language) code
Class-based programming languages
Cross-platform free software
Cross-platform software
Dynamic programming languages
Dynamically typed programming languages
Extensible syntax programming languages
Functional languages
Lisp (programming language)
Lisp programming language family
Multi-paradigm programming languages
Object-oriented programming languages
Procedural programming languages
Programming languages created in 1984