HOME

TheInfoList



OR:

Pulse-code modulation (PCM) is a method used to digitally represent sampled
analog signal An analog signal or analogue signal (see spelling differences) is any continuous signal representing some other quantity, i.e., ''analogous'' to another quantity. For example, in an analog audio signal, the instantaneous signal voltage vari ...
s. It is the standard form of digital audio in computers,
compact disc The compact disc (CD) is a digital optical disc data storage format that was co-developed by Philips and Sony to store and play digital audio recordings. In August 1982, the first compact disc was manufactured. It was then released in Octo ...
s,
digital telephony Telephony ( ) is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is i ...
and other digital audio applications. In a PCM stream, the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of a ...
of the analog signal is sampled regularly at uniform intervals, and each sample is quantized to the nearest value within a range of digital steps. Linear pulse-code modulation (LPCM) is a specific type of PCM in which the quantization levels are linearly uniform. This is in contrast to PCM encodings in which quantization levels vary as a function of amplitude (as with the A-law algorithm or the μ-law algorithm). Though ''PCM'' is a more general term, it is often used to describe data encoded as LPCM. A PCM stream has two basic properties that determine the stream's fidelity to the original analog signal: the sampling rate, which is the number of times per second that samples are taken; and the bit depth, which determines the number of possible digital values that can be used to represent each sample.


History

Early electrical communications started to sample signals in order to multiplex samples from multiple
telegraphy Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas ...
sources and to convey them over a single telegraph cable. The American inventor Moses G. Farmer conceived telegraph time-division multiplexing (TDM) as early as 1853. Electrical engineer W. M. Miner, in 1903, used an electro-mechanical commutator for time-division multiplexing multiple telegraph signals; he also applied this technology to
telephony Telephony ( ) is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is i ...
. He obtained intelligible speech from channels sampled at a rate above 3500–4300 Hz; lower rates proved unsatisfactory. In 1920, the Bartlane cable picture transmission system used telegraph signaling of characters punched in paper tape to send samples of images quantized to 5 levels. In 1926, Paul M. Rainey of Western Electric patented a facsimile machine which transmitted its signal using 5-bit PCM, encoded by an opto-mechanical analog-to-digital converter. The machine did not go into production. British engineer Alec Reeves, unaware of previous work, conceived the use of PCM for voice communication in 1937 while working for International Telephone and Telegraph in France. He described the theory and its advantages, but no practical application resulted. Reeves filed for a French patent in 1938, and his US patent was granted in 1943. By this time Reeves had started working at the Telecommunications Research Establishment. The first transmission of speech by digital techniques, the
SIGSALY SIGSALY (also known as the X System, Project X, Ciphony I, and the Green Hornet) was a secure speech system used in World War II for the highest-level Allied communications. It pioneered a number of digital communications concepts, including the ...
encryption equipment, conveyed high-level Allied communications during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
. In 1943 the
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
researchers who designed the SIGSALY system became aware of the use of PCM binary coding as already proposed by Reeves. In 1949, for the Canadian Navy's DATAR system, Ferranti Canada built a working PCM radio system that was able to transmit digitized radar data over long distances. PCM in the late 1940s and early 1950s used a
cathode-ray Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to ele ...
coding tube with a plate electrode having encoding perforations. As in an oscilloscope, the beam was swept horizontally at the sample rate while the vertical deflection was controlled by the input analog signal, causing the beam to pass through higher or lower portions of the perforated plate. The plate collected or passed the beam, producing current variations in binary code, one bit at a time. Rather than natural binary, the grid of Goodall's later tube was perforated to produce a glitch-free Gray code and produced all bits simultaneously by using a fan beam instead of a scanning beam. In the United States, the National Inventors Hall of Fame has honored Bernard M. Oliver and
Claude Shannon Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, and cryptographer known as a "father of information theory". As a 21-year-old master's degree student at the Massachusetts In ...
as the inventors of PCM, as described in "Communication System Employing Pulse Code Modulation", filed in 1946 and 1952, granted in 1956. Another patent by the same title was filed by John R. Pierce in 1945, and issued in 1948: . The three of them published "The Philosophy of PCM" in 1948. The
T-carrier The T-carrier is a member of the series of carrier systems developed by AT&T Bell Laboratories for digital transmission of multiplexed telephone calls. The first version, the Transmission System 1 (T1), was introduced in 1962 in the Bell ...
system, introduced in 1961, uses two twisted-pair transmission lines to carry 24 PCM
telephone A telephone is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be easily heard directly. A telephone converts sound, typically and most efficiently the human voice, into el ...
calls sampled at 8 kHz and 8-bit resolution. This development improved capacity and call quality compared to the previous frequency-division multiplexing schemes. In 1973, adaptive differential pulse-code modulation (ADPCM) was developed, by P. Cummiskey, Nikil Jayant and James L. Flanagan.


Digital audio recordings

In 1967, the first PCM recorder was developed by NHK's research facilities in Japan. The 30 kHz 12-bit device used a compander (similar to DBX Noise Reduction) to extend the dynamic range, and stored the signals on a
video tape recorder A video tape recorder (VTR) is a tape recorder designed to record and playback video and audio material from magnetic tape. The early VTRs were open-reel devices that record on individual reels of 2-inch-wide (5.08 cm) tape. They were ...
. In 1969, NHK expanded the system's capabilities to 2-channel stereo and 32 kHz 13-bit resolution. In January 1971, using NHK's PCM recording system, engineers at Denon recorded the first commercial digital recordings.Among the first recordings was ''Uzu: The World Of Stomu Yamash'ta 2'' by Stomu Yamashta. In 1972, Denon unveiled the first 8-channel digital recorder, the DN-023R, which used a 4-head open reel broadcast video tape recorder to record in 47.25 kHz, 13-bit PCM audio.The first recording with this new system was recorded in
Tokyo Tokyo (; ja, æ±äº¬, , ), officially the Tokyo Metropolis ( ja, æ±äº¬éƒ½, label=none, ), is the capital and List of cities in Japan, largest city of Japan. Formerly known as Edo, its metropolitan area () is the most populous in the world, ...
during April 24–26, 1972.
In 1977, Denon developed the portable PCM recording system, the DN-034R. Like the DN-023R, it recorded 8 channels at 47.25 kHz, but it used 14-bits "with emphasis, making it equivalent to 15.5 bits." In 1979, the first digital pop album, Bop till You Drop, was recorded. It was recorded in 50 kHz, 16-bit linear PCM using a 3M digital tape recorder. The
compact disc The compact disc (CD) is a digital optical disc data storage format that was co-developed by Philips and Sony to store and play digital audio recordings. In August 1982, the first compact disc was manufactured. It was then released in Octo ...
(CD) brought PCM to consumer audio applications with its introduction in 1982. The CD uses a
44,100 Hz In digital audio, 44,100  Hz (alternately represented as 44.1 kHz) is a common sampling frequency. Analog audio is often recorded by sampling it 44,100 times per second, and then these samples are used to reconstruct the audio signal w ...
sampling frequency and 16-bit resolution and stores up to 80 minutes of stereo audio per disc.


Digital telephony

The rapid development and wide adoption of PCM
digital telephony Telephony ( ) is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is i ...
was enabled by metal–oxide–semiconductor (MOS) switched capacitor (SC) circuit technology, developed in the early 1970s. This led to the development of PCM codec-filter chips in the late 1970s. The silicon-gate CMOS (complementary MOS) PCM codec-filter chip, developed by David A. Hodges and W.C. Black in 1980, has since been the industry standard for digital telephony. By the 1990s,
telecommunication network A telecommunications network is a group of nodes interconnected by telecommunications links that are used to exchange messages between the nodes. The links may use a variety of technologies based on the methodologies of circuit switching, mes ...
s such as the public switched telephone network (PSTN) had been largely digitized with very-large-scale integration (VLSI) CMOS PCM codec-filters, widely used in electronic switching systems for telephone exchanges, user-end
modems A modulator-demodulator or modem is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more carr ...
and a wide range of digital transmission applications such as the integrated services digital network (ISDN), cordless telephones and cell phones.


Implementations

PCM is the method of encoding typically used for uncompressed digital audio.Other methods exist such as pulse-density modulation used also on Super Audio CD. * The 4ESS switch introduced time-division switching into the US telephone system in 1976, based on medium scale integrated circuit technology. * LPCM is used for the lossless encoding of audio data in the compact disc Red Book standard (informally also known as ''Audio CD''), introduced in 1982. * AES3 (specified in 1985, upon which S/PDIF is based) is a particular format using LPCM. * LaserDiscs with digital sound have an LPCM track on the digital channel. * On PCs, PCM and LPCM often refer to the format used in WAV (defined in 1991) and AIFF audio container formats (defined in 1988). LPCM data may also be stored in other formats such as AU, raw audio format (header-less file) and various multimedia container formats. * LPCM has been defined as a part of the DVD (since 1995) and Blu-ray (since 2006) standards. It is also defined as a part of various digital video and audio storage formats (e.g. DV since 1995, AVCHD since 2006). * LPCM is used by HDMI (defined in 2002), a single-cable digital audio/video connector interface for transmitting uncompressed digital data. * RF64 container format (defined in 2007) uses LPCM and also allows non-PCM bitstream storage: various compression formats contained in the RF64 file as data bursts (Dolby E, Dolby AC3, DTS, MPEG-1/MPEG-2 Audio) can be "disguised" as PCM linear.


Modulation

In the diagram, a sine wave (red curve) is sampled and quantized for PCM. The sine wave is sampled at regular intervals, shown as vertical lines. For each sample, one of the available values (on the y-axis) is chosen. The PCM process is commonly implemented on a single integrated circuit called an analog-to-digital converter (ADC). This produces a fully discrete representation of the input signal (blue points) that can be easily encoded as digital data for storage or manipulation. Several PCM streams could also be multiplexed into a larger aggregate data stream, generally for transmission of multiple streams over a single physical link. One technique is called time-division multiplexing (TDM) and is widely used, notably in the modern public telephone system.


Demodulation

The electronics involved in producing an accurate analog signal from the discrete data are similar to those used for generating the digital signal. These devices are
digital-to-analog converter In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function. There are several DAC archi ...
s (DACs). They produce a voltage or current (depending on type) that represents the value presented on their digital inputs. This output would then generally be filtered and amplified for use. To recover the original signal from the sampled data, a ''demodulator'' can apply the procedure of modulation in reverse. After each sampling period, the demodulator reads the next value and transitions the output signal to the new value. As a result of these transitions, the signal retains a significant amount of high-frequency energy due to imaging effects. To remove these undesirable frequencies, the demodulator passes the signal through a reconstruction filter that suppresses energy outside the expected frequency range (greater than the Nyquist frequency f_s / 2 ).Some systems use digital filtering to remove some of the aliasing, converting the signal from digital to analog at a higher sample rate such that the analog anti-aliasing filter is much simpler. In some systems, no explicit filtering is done at all; as it's impossible for any system to reproduce a signal with infinite bandwidth, inherent losses in the system compensate for the artifacts — or the system simply does not require much precision.


Standard sampling precision and rates

Common sample depths for LPCM are 8, 16, 20 or 24 bits per sample. LPCM encodes a single sound channel. Support for multichannel audio depends on file format and relies on synchronization of multiple LPCM streams. While two channels (stereo) is the most common format, systems can support up to 8 audio channels (7.1 surround) or more. Common sampling frequencies are 48 kHz as used with DVD format videos, or 44.1 kHz as used in CDs. Sampling frequencies of 96 kHz or 192 kHz can be used on some equipment, but the benefits have been debated.


Limitations

The Nyquist–Shannon sampling theorem shows PCM devices can operate without introducing distortions within their designed frequency bands if they provide a sampling frequency at least twice that of the highest frequency contained in the input signal. For example, in
telephony Telephony ( ) is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is i ...
, the usable voice frequency band ranges from approximately 300  Hz to 3400 Hz. For effective reconstruction of the voice signal, telephony applications therefore typically use an 8000 Hz sampling frequency which is more than twice the highest usable voice frequency. Regardless, there are potential sources of impairment implicit in any PCM system: * Choosing a discrete value that is near but not exactly at the analog signal level for each sample leads to quantization error.Quantization error swings between -''q''/2 and ''q''/2. In the ideal case (with a fully linear ADC and signal level >> ''q'') it is uniformly distributed over this interval, with zero mean and variance of ''q''2/12. * Between samples no measurement of the signal is made; the sampling theorem guarantees non-ambiguous representation and recovery of the signal only if it has no energy at frequency ''fs''/2 or higher (one half the sampling frequency, known as the Nyquist frequency); higher frequencies will not be correctly represented or recovered and add aliasing distortion to the signal below the Nyquist frequency. * As samples are dependent on time, an accurate clock is required for accurate reproduction. If either the encoding or decoding clock is not stable, these imperfections will directly affect the output quality of the device.A slight difference between the encoding and decoding clock frequencies is not generally a major concern; a small constant error is not noticeable. Clock error does become a major issue if the clock contains significant jitter, however.


Processing and coding

Some forms of PCM combine signal processing with coding. Older versions of these systems applied the processing in the analog domain as part of the analog-to-digital process; newer implementations do so in the digital domain. These simple techniques have been largely rendered obsolete by modern transform-based audio compression techniques, such as modified discrete cosine transform (MDCT) coding. * Linear PCM (LPCM) is PCM with linear quantization. *
Differential PCM Differential pulse-code modulation (DPCM) is a signal encoder that uses the baseline of pulse-code modulation (PCM) but adds some functionalities based on the prediction of the samples of the signal. The input can be an analog signal or a digital ...
(DPCM) encodes the PCM values as differences between the current and the predicted value. An algorithm predicts the next sample based on the previous samples, and the encoder stores only the difference between this prediction and the actual value. If the prediction is reasonable, fewer bits can be used to represent the same information. For audio, this type of encoding reduces the number of bits required per sample by about 25% compared to PCM. * Adaptive differential pulse-code modulation (ADPCM) is a variant of DPCM that varies the size of the quantization step, to allow further reduction of the required bandwidth for a given signal-to-noise ratio. * Delta modulation is a form of DPCM that uses one bit per sample to indicate whether the signal is increasing or decreasing compared to the previous sample. In telephony, a standard audio signal for a single phone call is encoded as 8,000 samples per second, of 8 bits each, giving a 64 kbit/s digital signal known as
DS0 Digital Signal 0 (DS0) is a basic digital signaling rate of 64 kilobits per second ( kbit/s), corresponding to the capacity of one analog voice-frequency-equivalent communication channel. The DS0 rate, and its equivalents E0 in the E-carrier sys ...
. The default signal compression encoding on a DS0 is either μ-law (mu-law) PCM (North America and Japan) or A-law PCM (Europe and most of the rest of the world). These are logarithmic compression systems where a 12- or 13-bit linear PCM sample number is mapped into an 8-bit value. This system is described by international standard G.711. Where circuit costs are high and loss of voice quality is acceptable, it sometimes makes sense to compress the voice signal even further. An ADPCM algorithm is used to map a series of 8-bit μ-law or A-law PCM samples into a series of 4-bit ADPCM samples. In this way, the capacity of the line is doubled. The technique is detailed in the G.726 standard. Audio coding formats and audio codecs have been developed to achieve further compression. Some of these techniques have been standardized and patented. Advanced compression techniques, such as MDCT and linear predictive coding (LPC), are now widely used in mobile phones,
voice over IP Voice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for the delivery of voice communications and multimedia sessions over Internet Protocol (IP) networks, such as the Internet. The terms Interne ...
(VoIP) and streaming media.


Encoding for serial transmission

PCM can be either return-to-zero (RZ) or non-return-to-zero (NRZ). For a NRZ system to be synchronized using in-band information, there must not be long sequences of identical symbols, such as ones or zeroes. For binary PCM systems, the density of 1-symbols is called ''ones-density''.Stallings, William
Digital Signaling Techniques
December 1984, Vol. 22, No. 12, IEEE Communications Magazine
Ones-density is often controlled using precoding techniques such as run-length limited encoding, where the PCM code is expanded into a slightly longer code with a guaranteed bound on ones-density before modulation into the channel. In other cases, extra
framing bit In telecommunication, frame synchronization or framing is the process by which, while receiving a stream of framed data, incoming frame alignment signals (i.e., a distinctive bit sequences or syncwords) are identified (that is, distinguished from ...
s are added into the stream, which guarantees at least occasional symbol transitions. Another technique used to control ones-density is the use of a scrambler on the data, which will tend to turn the data stream into a stream that looks pseudo-random, but where the data can be recovered exactly by a complementary descrambler. In this case, long runs of zeroes or ones are still possible on the output but are considered unlikely enough to allow reliable synchronization. In other cases, the long term DC value of the modulated signal is important, as building up a DC bias will tend to move communications circuits out of their operating range. In this case, special measures are taken to keep a count of the cumulative DC bias and to modify the codes if necessary to make the DC bias always tend back to zero. Many of these codes are bipolar codes, where the pulses can be positive, negative or absent. In the typical alternate mark inversion code, non-zero pulses alternate between being positive and negative. These rules may be violated to generate special symbols used for framing or other special purposes.


Nomenclature

The word ''pulse'' in the term ''pulse-code modulation'' refers to the pulses to be found in the transmission line. This perhaps is a natural consequence of this technique having evolved alongside two analog methods, pulse-width modulation and pulse-position modulation, in which the information to be encoded is represented by discrete signal pulses of varying width or position, respectively. In this respect, PCM bears little resemblance to these other forms of signal encoding, except that all can be used in time-division multiplexing, and the numbers of the PCM codes are represented as electrical pulses.


See also

*
Beta encoder A beta encoder is an analog-to-digital conversion (A/D) system in which a real number in the unit interval is represented by a finite representation of a sequence in ''base beta'', with beta being a real number between 1 and 2. Beta encoders are an ...
* Equivalent pulse code modulation noise * Signal-to-quantization-noise ratio (SQNR), one method of measuring quantization error


Explanatory notes


References


Further reading

* * * * *


External links


PCM description on MultimediaWiki

Ralph Miller
and Bob Badgley invented multi-level PCM independently in their work at Bell Labs on
SIGSALY SIGSALY (also known as the X System, Project X, Ciphony I, and the Green Hornet) was a secure speech system used in World War II for the highest-level Allied communications. It pioneered a number of digital communications concepts, including the ...
: filed in 1943: N-ary Pulse Code Modulation.
Information about PCM
A description of PCM with links to information about subtypes of this format (for example linear pulse-code modulation), and references to their specifications.
Summary of LPCM
– Contains links to information about implementations and their specifications.

– Contains information about, and specifications for the implementation of LPCM used in WAV files.
RFC 4856 – Media Type Registration of Payload Formats in the RTP Profile for Audio and Video Conferences
– audio/L8 and audio/L16 (March 2007)
RFC 3190 – RTP Payload Format for 12-bit DAT Audio and 20- and 24-bit Linear Sampled Audio
(January 2002)
RFC 3551 – RTP Profile for Audio and Video Conferences with Minimal Control
– L8 and L16 (July 2003) {{Authority control Audio codecs Computer file formats Digital audio recording Digital audio Multiplexing Quantized radio modulation modes Telephony signals