Protein toxicity is the effect of the buildup of protein
metabolic waste
Metabolic wastes or excrements are substances left over from metabolic processes (such as cellular respiration) which cannot be used by the organism (they are surplus or toxic), and must therefore be excreted. This includes nitrogen compounds ...
compounds, like
urea
Urea, also called carbamide (because it is a diamide of carbonic acid), is an organic compound with chemical formula . This amide has two Amine, amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest am ...
,
uric acid
Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the Chemical formula, formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the meta ...
,
ammonia
Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
, and
creatinine
Creatinine (; ) is a breakdown product of creatine phosphate from muscle and protein metabolism. It is released at a constant rate by the body (depending on muscle mass).
Biological relevance
Serum creatinine (a blood measurement) is an impor ...
. Protein toxicity has many causes, including urea cycle disorders, genetic mutations, excessive protein intake, and insufficient kidney function, such as
chronic kidney disease
Chronic kidney disease (CKD) is a type of long-term kidney disease, defined by the sustained presence of abnormal kidney function and/or abnormal kidney structure. To meet criteria for CKD, the abnormalities must be present for at least three mo ...
and
acute kidney injury
Acute kidney injury (AKI), previously called acute renal failure (ARF), is a sudden decrease in renal function, kidney function that develops within seven days, as shown by an increase in serum creatinine or a decrease in urine output, or both.
...
.
Symptoms of protein toxicity include unexplained vomiting and loss of appetite. Untreated protein toxicity can lead to serious complications such as seizures,
encephalopathy
Encephalopathy (; ) means any disorder or disease of the brain, especially chronic degenerative conditions. In modern usage, encephalopathy does not refer to a single disease, but rather to a syndrome of overall brain dysfunction; this syndrome ...
, further kidney damage, and even death.
Definition
Protein toxicity occurs when protein
metabolic wastes build up in the body. During protein metabolism, nitrogenous wastes such as urea, uric acid, ammonia, and creatinine are produced. These compounds are not utilized by the human body and are usually excreted by the kidney. However, due to conditions such as renal insufficiency, the under-functioning kidney is unable to excrete these metabolic wastes, causing them to accumulate in the body and lead to toxicity. Although there are many causes of protein toxicity, this condition is most prevalent in people with
chronic kidney disease
Chronic kidney disease (CKD) is a type of long-term kidney disease, defined by the sustained presence of abnormal kidney function and/or abnormal kidney structure. To meet criteria for CKD, the abnormalities must be present for at least three mo ...
who consume a protein-rich diet, specifically, proteins from animal sources that are rapidly digested and metabolized, causing the release of a high concentration of protein metabolic wastes in the blood stream rapidly.
Causes and pathophysiology
Protein toxicity has a significant role in neurodegenerative diseases. Whether it is due to high protein intake, pathological disorders lead to the accumulation of protein waste products, the no efficient metabolism of the proteins, or oligomerization of the amino acids from proteolysis. The mechanism by which protein can lead to well known neurodegenerative diseases includes transcriptions dysfunction, propagation, pathological
cytoplasmic inclusions, mitochondrial and
stress granule dysfunction.
Ammonia, one of the waste products of protein metabolism, is very harmful, especially to the brain, where it crosses the blood brain barrier leading to a whole range of neurological dysfunctions from cognitive impairment to death. The brain has a mechanism to counteract the presence of this waste metabolite. One of the mechanisms involved in the impairment of the brain is the compromise of
astrocyte
Astrocytes (from Ancient Greek , , "star" and , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of en ...
potassium buffering, where astrocytes play a key role. However, as more ammonia crosses, the system gets saturated, leading to astrocyte swelling and brain edema.
Urea is another waste product that originates from protein metabolism in humans. However, urea is used by the body as a source of nitrogen essential for growth and life. The most relevant disorders on the urea cycle are genetic, leading to defective
enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s or transporters inhibiting the reabsorption of urate with the subsequent increase in ammonia levels, which is toxic.
High protein intake can lead to high protein waste, and this is different from protein poisoning since the issue relates to the high level of the waste metabolites. Usually, when protein consumption goes above one-third of the food we consumed, this situation presents. The liver has a limited capacity and will not
deaminate proteins, leading to increased nitrogen in the body. The rate at which urea is excreted can not keep up with the rate at which it is produced. The catabolism of amino acids can lead to toxic levels of ammonia. Furthermore, there is a limited rate at which the gastrointestinal tract can absorb amino acids from proteins.
Uric acid is not a waste metabolite derived from protein metabolism, but many high protein diets also contain higher relative fractions of nucleic acids. One of the two types of nucleic acids,
purine
Purine is a heterocyclic aromatic organic compound that consists of two rings (pyrimidine and imidazole) fused together. It is water-soluble. Purine also gives its name to the wider class of molecules, purines, which include substituted puri ...
s (the other being
pyrimidine
Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The oth ...
s, which are not problematic), are metabolized to uric acid in humans when in excess, which can lead to problems, chiefly gout.
The kidneys play an essential role in the reabsorption and excretion of uric acid. Certain transporters located in the
nephron
The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structu ...
in the apical and basolateral surfaces regulate uric acid serum levels. Uric acid is not as toxic as other nitrogen derivates. It has an antioxidant function in the blood at low levels. People with compromised kidneys will have a lower excretion of uric acid leading to several diseases, including further renal damage, cardiovascular disease, diabetes, and gout.
Creatinine
Creatinine (; ) is a breakdown product of creatine phosphate from muscle and protein metabolism. It is released at a constant rate by the body (depending on muscle mass).
Biological relevance
Serum creatinine (a blood measurement) is an impor ...
might not be a direct indicator of protein toxicity; however, it is important to mention that creatinine could increase due to overwork by the kidneys exposed to high levels of protein waste. Also, high serum creatinine levels could indicate decreased renal filtration rate due to kidney disease, increase byproduct as a consequence of muscle breakdown, or high protein intake.
Effects of a high protein diet
A high-protein diet is a health concern for those suffering from
kidney disease
Kidney disease, or renal disease, technically referred to as nephropathy, is damage to or disease of a kidney. Nephritis is an Inflammation, inflammatory kidney disease and has several types according to the location of the inflammation. Infla ...
. The main concern is that a high protein intake may promote further renal damage that can lead to protein toxicity. The physiological changes induced by an increased protein intake, such as an increased glomerular pressure and
hyperfiltration, place further strain on already damaged kidneys. This strain can lead to proteins being inadequately metabolized and subsequently causing toxicity. A high-protein diet can lead to complications for those with renal disease and has been linked to further progression of the disease. The well-known Nurse's Health Study found a correlation between the loss of kidney function and an increased dietary intake of animal protein by people who had already been diagnosed with renal disease.
This association suggests that a total protein intake that exceeds the recommendations may accelerate renal disease and lead to risk of protein toxicity within a diseased individual. For this reason, dietary protein restriction is a common treatment for people with renal disease in which proteinuria is present. Protein restricted individuals have been shown to have slower rates of progression of their renal diseases.
Several studies, however, have found no evidence of protein toxicity due to high protein intakes on kidney function in healthy people. Diets that regularly exceed the recommendations for protein intake have been found to lead to an increased
glomerular filtration rate
Renal functions include maintaining an acid–base balance; regulating fluid balance; regulating sodium, potassium, and other electrolytes; clearance (medicine), clearing toxins; absorption of glucose, amino acids, and other small molecules; reg ...
in the kidneys and also have an effect on the hormone systems in the body. It is well established that these physiological effects are harmful to individuals with renal disease, but research has not found these responses to be detrimental to those who are healthy and demonstrate adequate renal activity. In people with healthy kidney function, the kidneys work continuously to excrete the by-products of
protein metabolism
Protein metabolism denotes the various biochemical processes responsible for the synthesis of proteins and amino acids (anabolism), and the breakdown of proteins by catabolism.
The steps of protein synthesis include transcription, translation, an ...
which prevents protein toxicity from occurring. In response to an increased consumption of dietary protein, the kidneys maintain homeostasis within the body by operating at an increased capacity, producing a higher amount of urea and subsequently excreting it from the body. Although some have proposed that this increase in waste production and excretion will cause increased strain on the kidneys, other research has not supported this.
Currently, evidence suggests that changes in renal function that occur in response to an increased dietary protein intake are part of the normal adaptive system employed by the body to sustain
homeostasis
In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
. In a healthy individual with well-functioning kidneys, there is no need for concern that an increased dietary protein intake will lead to protein toxicity and decreased renal function.
Protein toxicity and other metabolic disorders associated with chronic kidney failure have been shown to be related to more systemic complications such as
atherosclerosis
Atherosclerosis is a pattern of the disease arteriosclerosis, characterized by development of abnormalities called lesions in walls of arteries. This is a chronic inflammatory disease involving many different cell types and is driven by eleva ...
,
anemia
Anemia (also spelt anaemia in British English) is a blood disorder in which the blood has a reduced ability to carry oxygen. This can be due to a lower than normal number of red blood cells, a reduction in the amount of hemoglobin availabl ...
,
malnutrition
Malnutrition occurs when an organism gets too few or too many nutrients, resulting in health problems. Specifically, it is a deficiency, excess, or imbalance of energy, protein and other nutrients which adversely affects the body's tissues a ...
, and
hyperparathyroidism
Hyperparathyroidism is an increase in parathyroid hormone (PTH) levels in the blood. This occurs from a disorder either within the parathyroid glands ( primary hyperparathyroidism) or as response to external stimuli ( secondary hyperparathyroi ...
.
Symptoms
Unexplained vomiting and a loss of appetite are indicators of protein toxicity. If those two symptoms are accompanied by an ammonia quality on the breath, the onset of kidney failure is a likely culprit. People with kidney disease who are not on dialysis are advised to avoid consumption of protein if possible, as consuming too much accelerates the condition and can lead to death. Most of the problems stem from the accumulation of unfiltered
toxins
A toxin is a naturally occurring poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919), derived ...
and wastes from protein
metabolism
Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
.
Kidney function naturally declines with age due to the gradual loss of
nephrons (filters) in the kidney.
Common causes of chronic kidney disease include
diabetes
Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or the cells of th ...
,
heart disease
Cardiovascular disease (CVD) is any disease involving the heart or blood vessels. CVDs constitute a class of diseases that includes: coronary artery diseases (e.g. angina pectoris, angina, myocardial infarction, heart attack), heart failure, ...
, long term untreated
high blood pressure
Hypertension, also known as high blood pressure, is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms itself. It is, however, a major ri ...
, as well as abuse of analgesics like
ibuprofen
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) that is used to relieve pain, fever, and inflammation. This includes dysmenorrhea, painful menstrual periods, migraines, and rheumatoid arthritis. It can be taken oral administration, ...
,
aspirin
Aspirin () is the genericized trademark for acetylsalicylic acid (ASA), a nonsteroidal anti-inflammatory drug (NSAID) used to reduce pain, fever, and inflammation, and as an antithrombotic. Specific inflammatory conditions that aspirin is ...
, and
paracetamol
Paracetamol, or acetaminophen, is a non-opioid analgesic and antipyretic agent used to treat fever and mild to moderate pain. It is a widely available over-the-counter drug sold under various brand names, including Tylenol and Panadol.
Parac ...
. Kidney disease like the
polycystic kidney disease can be genetic in nature and progress as the individual ages.
Diagnosis
Under normal conditions in the body, ammonia, urea, uric acid, and creatinine are produced by protein metabolism and excreted through the kidney as urine. When these by-products cannot be excreted properly from the body they will accumulate and become highly toxic. Protein consumption is a major source of these waste products. An accumulation of these waste products can occur in people with kidney insufficiency who eat a diet rich in protein and therefore can not excrete the waste properly.
Blood urea nitrogen (BUN) test measures the amount of urea nitrogen in the blood. Increased levels of urea in the blood (
uremia
Uremia is the condition of having high levels of urea in the blood. Urea is one of the primary components of urine. It can be defined as an excess in the blood of amino acid and protein metabolism end products, such as urea and creatinine, which ...
) is an indicator for poor elimination of urea from the body usually due to kidney damage.
Increased BUN levels can be caused by kidney diseases, kidney stones, congestive heart failure, fever, and gastrointestinal bleedings. BUN levels can also be elevated in pregnant people and people whose diet consists mainly of protein.
Increased creatinine levels in the blood can also be a sign of kidney damage and inability to excrete protein waste by-products properly.
A confirmation of kidney disease or kidney failure is often obtained by performing a blood test which measures the concentration of creatinine and urea (
blood urea nitrogen).
A creatinine blood test and BUN test are usually performed together along with other blood panels for diagnosis.
Treatment
Treatment options for protein toxicity can include renal replacement therapies like
hemodialysis
Hemodialysis, American and British English spelling differences#ae and oe, also spelled haemodialysis, or simply ''"'dialysis'"'', is a process of filtering the blood of a person whose kidneys are not working normally. This type of Kidney dialys ...
and hemofiltration.
Lifestyle modifications like a diet low in protein, decreased sodium intake, and exercise can also be in incorporated as part of a treatment plan.
Medications may also be prescribed depending on symptoms. Common medications prescribed for kidney diseases include hypertension medications like
angiotensin converting enzyme inhibitors (ACEI) and
angiotensin II receptor blockers (ARB) as they have been found to be kidney protective. Diuretics may also be prescribed to facilitate with waste excretion as well as any fluid retention.
Kidney transplant surgery is another treatment option where a healthy kidney is donated from a living or deceased donor to the recipient.
Complications
Accumulation of protein metabolic waste products in the body can cause diseases and serious complications such as gout, uremia, acute renal failure, seizure, encephalopathy, and death. These products of protein metabolism, including urea, uric acid, ammonia, and creatinine, are compounds that the human body must eliminate in order for the body to function properly.
The build up of uric acid causing high amount of uric acid in blood, is a condition called
hyperuricemia
Hyperuricaemia or hyperuricemia is an abnormally high level of uric acid in the blood. In the pH conditions of body fluid, uric acid exists largely as urate, the ion form. Serum uric acid concentrations greater than 6 mg/dL for females, 7 ...
. Long-standing hyperuricemia can cause deposition of
monosodium urate crystals
Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the Chemical formula, formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the meta ...
in or around joints, resulting in an arthritic condition called
gout
Gout ( ) is a form of inflammatory arthritis characterized by recurrent attacks of pain in a red, tender, hot, and Joint effusion, swollen joint, caused by the deposition of needle-like crystals of uric acid known as monosodium urate crysta ...
.
When the body is unable to eliminate urea, it can cause a serious medical condition called uremia, which is a high level of urea in blood. Symptoms of uremia include nausea, vomiting, fatigue, anorexia, weight loss, and change in mental status. If left untreated, uremia can lead to seizure, coma, cardiac arrest, and death.
When the body is unable to process or eliminate ammonia, such as in protein toxicity, this will lead to the build up of ammonia in the bloodstream, causing a condition called
hyperammonemia. Symptoms of elevated blood ammonia include muscle weakness and fatigue. If left untreated, ammonia can cross the blood brain barrier and affect brain tissues, leading to a spectrum of neuropsychiatric and neurological symptoms including impaired memory, seizure, confusion, delirium, excessive sleepiness, disorientation, brain edema, intracranial hypertension, coma, and even death.
Epidemiology
The prevalence of protein toxicity cannot be accurately quantified as there are numerous etiologies from which protein toxicity can arise.
Many people have protein toxicity as a result of chronic kidney disease (CKD) or end-stage renal disease (ESRD). The prevalence of CKD (all stages) from 1988 to 2016 in the U.S. has remained relatively consistent at about 14.2% annually. The prevalence of people who have received treatment for ESRD has increased to about 2,284 people per 1 million in 2018, up from 1927 people per 1 million in 2007. Prevalence of treated ESRD increases with age, is more prevalent in males than in females, and is higher in Native Hawaiians and Pacific Islanders over any other racial group. However, the prevalence of protein toxicity specifically is difficult to quantify as people who have diseases that cause protein metabolites to accumulate typically initiate hemodialysis before they become symptomatic.
Urea cycle disorders also cause toxic buildup of protein metabolites, namely ammonia. As of 2013, in the U.S., the incidence of urea cycle disorders has been estimated to be 1 case in every 31,000 births, resulting in about 113 new cases annually.
Special populations
Neonates
Protein toxicity, specifically ammonia buildup, can affect preterm newborns that have serious defects in the urea cycle enzymes with almost no physical manifestations at birth. Clinical symptoms can manifest within a few days of birth, causing extreme illness and intellectual disability or death, if left untreated.
Hyperammonemia in newborns can be diagnosed with visual cues like sepsis-like presentation, hyperventilation, fluctuating body temperature, and
respiratory distress; blood panels can also be used to form differential diagnoses between hyperammonemia caused by urea cycle disorders and other disorders.
Neurodegenerative diseases
People who have neurodegenerative diseases like
Huntington's disease
Huntington's disease (HD), also known as Huntington's chorea, is an incurable neurodegenerative disease that is mostly Genetic disorder#Autosomal dominant, inherited. It typically presents as a triad of progressive psychiatric, cognitive, and ...
,
dementia
Dementia is a syndrome associated with many neurodegenerative diseases, characterized by a general decline in cognitive abilities that affects a person's ability to perform activities of daily living, everyday activities. This typically invo ...
,
Parkinson's disease
Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor system, motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become ...
, and
amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or—in the United States—Lou Gehrig's disease (LGD), is a rare, Terminal illness, terminal neurodegenerative disease, neurodegenerative disorder that results i ...
(ALS), also often show symptoms of protein toxicity.
Cellular deficits and genetic mutations caused by these neurodegenerative diseases can pathologically alter gene transcription, negatively affecting protein metabolism.
See also
*
Proteopathy – damage caused by mis-folded proteins
References
Further reading
*
*
*
Educational resource for renal protein toxicity{{refend
Symptoms and signs
Nephrology
Proteins as nutrients