Pier (bridge Structure)
   HOME

TheInfoList



OR:

The pier of a bridge is an intermediate support that holds the deck of the structure. It is a massive and permanent support, as opposed to the
shoring Shoring is the process of temporarily supporting a building, vessel, structure, or trench with shores (Jack post, props) when in danger of collapse or during repairs or alterations. ''Shoring'' comes from ''shore'', a timber or metal prop. Shoring ...
, which is lighter and provides temporary support.


History

Until the advent of concrete and the use of
cast iron Cast iron is a class of iron–carbon alloys with a carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine the form in which its car ...
and then steel, bridges were made of masonry. Roman bridges were sturdy, semicircular, and rested on thick piers, with a width equal to about half the span of the vault. It was only from 1750, with
Jean-Rodolphe Perronet Jean-Rodolphe Perronet (27 October 1708 – 27 February 1794) was a French architect and structural engineer known for his many stone arch bridges. His best-known work is the Pont de la Concorde (Paris), Pont de la Concorde (1787). Early life P ...
, that the thickness of the piers could be reduced. While it was considered an absolute rule to give them a thickness equal to one-fifth of the span, Perronet proposed and succeeded in having thicknesses equal to one-tenth of the span and rises varying between one-fifth and one-seventh accepted. These reductions significantly reduced the obstacle to water flow created by the structure. With a height of 92 meters, the piers of the Fades viaduct in France, inaugurated on 10 October 1909, are the tallest traditional masonry piers ever built. Considerable progress was then made with the invention of modern natural cement discovered in 1791 by James Parker in England and especially through the work of
Louis Vicat Louis Vicat (31 March 1786, Nevers – 10 April 1861, Grenoble) was a French engineer. He graduated from the École Polytechnique in 1804 and the École des Ponts et Chaussées in 1806. Vicat studied the setting of mortars and developed his ow ...
in France (1813–1818) who laid the foundations of the hydraulic binders industry and thus of concrete. The alliance with steel gave birth to reinforced concrete, allowing the construction of increasingly daring and economical structures.
Paul Séjourné Paul Séjourné (21 December 1851; Orléans – 19 January 1939; Paris) was a French engineer who specialized in the construction of large bridges from masonry, a domain in which he made some important innovations. Biography Paul Séjourné grad ...
would be the last great theorist of masonry bridges, and his methods and formulas for calculating piers remain relevant today. Piers then became more slender and taller. As early as 1937, considerable height was reached with the
Golden Gate Bridge The Golden Gate Bridge is a suspension bridge spanning the Golden Gate, the strait connecting San Francisco Bay and the Pacific Ocean in California, United States. The structure links San Francisco—the northern tip of the San Francisco Peni ...
in the United States, which has pylons 230 meters tall. A further leap forward occurred with the emergence of two new technologies: pre-stressed concrete developed by Eugène Freyssinet in 1928 and
high-performance concrete Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs. Mix design Modern concrete mix designs can be complex. The choice of a concrete mix depends on the need of the project ...
in the 1980s. The combination of the two allowed for the construction of very tall piers.


Masonry piers


Morphology

In masonry bridge piers, there is a resistant part and a filling part: * The periphery of the shafts over a certain thickness constitutes the resistant part, made of dressed stones in the angles and squared or even rough stones. * The filling, at the core of the support, consists of rough stones or rubble, bonded or not by mortar, offering no particular characteristics of mechanical resistance and sometimes even of very poor and very heterogeneous quality.


Calculation

The dimensions of the supports result from the consideration of four criteria: stability against overturning, compression resistance of the support masonry, permissible pressure on the ground, and aesthetics. However, the piers of the first bridges were not calculated, and the characteristics of the structures resulted from empirical formulas. The piers of the early structures were very robust to ensure the stability of the support during construction: each pier was self-stable under the thrust of the already built vault. Subsequently, technical evolution, such as simultaneous vault construction, allowed for refinement. The thickness of the piers at the level of the vault spring lines is given by the formulas of
Paul Séjourné Paul Séjourné (21 December 1851; Orléans – 19 January 1939; Paris) was a French engineer who specialized in the construction of large bridges from masonry, a domain in which he made some important innovations. Biography Paul Séjourné grad ...
.


Low piers

In this case, the height of the structure, measured between the top of the deck and the ground, is between the values a/3 and a/2, where a denotes the span of the arch, which is generally a semicircular or elliptical arch. The thickness e of the pier depends solely on the span of the arches: a/10 < e < a/8.


High piers

The total height of the structure is generally between 1.5 a and 2.5 a. The arches are semicircular, and their thickness T depends both on the span a of the arches and on the height H of the structure: If H = 2.5 a, T = 0.1 a + 0.04H If H < 2.5 a, T = 0.125 a + 0.04H However, if the span a is small (a<8 m), it is preferable to use the following formula for T: T = 0.15 a + 0.4.


Concrete piers

Most of the piers of modern bridges are made of reinforced concrete or prestressed concrete for larger structures. Two types of forms are mainly encountered: columns or walls. Each support can be composed of one or more walls or columns. The standard-shaped walls that can be found on most highways are represented in the illustration opposite. Columns, being visible surfaces, are often subject to architectural research. This can result in a different section from the classic disk or specific surfaces. This is called architectural concrete. Some structures have pile forms different from these two classic forms of column or wall. The deck of the Europe Bridge in Orléans is supported by particularly original tripodal piers. File:Nouveau pont de Gien (6).JPG, New Gien Bridge - Loiret. File:Viaduc de la Maine (2).jpg, Maine Viaduct. File:Viaduc de la Maine (6).jpg, Maine Viaduct. File:Pont Jean Moulin (4).jpg, Jean-Moulin Bridge (Angers).


Tall piles

A pile is considered tall when it exceeds 70 m. The slenderness, the ratio of the maximum diameter of the shaft to the height of the pile, is generally less than or equal to 1/10°. The compression exerted at the base of the pile is accentuated both by the weight of the pile itself and by the weight of the supported deck, as tall height generally combines, for architectural reasons, with long span. Therefore, this is a logical and sometimes privileged area for the use of high-performance concrete.


Used concrete

High-performance concretes are manufactured by reducing the
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
of the concrete, which means reducing the ratio E/C of the mass of water to that of cement per 1 m3 of concrete. A ratio E/C below 0.4 generally corresponds, with common cements, to the domain of HPC (the strength then exceeds 50 MPa). In practice, to overcome the decrease in workability of the concrete due to low E/C ratios,
superplasticizer Superplasticizers (SPs), also known as high range water reducers, are Concrete additive, additives used for making high strength concrete or to place Self-consolidating concrete, self-compacting concrete. Plasticizers are chemical compounds enabli ...
s are used to deflocculate the fines (cement, mineral additions, ultra-fines). The composition of the HPC80 concrete used for the Elorn Bridge was as follows: * Saint-Vigor CPA HP PM cement: 150 kg/m3 * Saint-Renan 0/4
sand Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is usually defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural ...
: 744 kg/m3 * Kerguillo 4/10
gravel Gravel () is a loose aggregation of rock fragments. Gravel occurs naturally on Earth as a result of sedimentation, sedimentary and erosion, erosive geological processes; it is also produced in large quantities commercially as crushed stone. Gr ...
: 423 kg/m3 * Kerguillo 10/16
gravel Gravel () is a loose aggregation of rock fragments. Gravel occurs naturally on Earth as a result of sedimentation, sedimentary and erosion, erosive geological processes; it is also produced in large quantities commercially as crushed stone. Gr ...
: 634 kg/m3 * Silica fume (8%): 36 kg/m3 * Plasticizer (3.95%): 18 kg/m3 * Setting retarder: 1.6 kg/m3 * Water (E/C ratio = 0.32): 132 kg/m3


Construction method

Two construction methods can be used to build tall piers: * Climbing or self-climbing
formwork Formwork is Molding (process), molds into which concrete or similar materials are either precast concrete, precast or cast-in-place concrete, cast-in-place. In the context of concrete construction, the falsework supports the shuttering mold ...
is the most commonly used method in France. The formwork relies on the already concreted part to rise to a determined height. However, concrete resumption is necessary each time the concreting is stopped. The piers of the
Millau Viaduct The Millau Viaduct (, ) is a multispan cable-stayed bridge completed in 2004 across the Canyon, gorge valley of the Tarn (river), Tarn near (west of) Millau in the Aveyron department in the Occitania (administrative region), Occitanie Region, i ...
and the Verrières Viaduct were built using this method. * Sliding formwork consists of continuously moving a formwork at a speed between 10 and 30 cm per hour. This technique avoids concrete resumption. The Tsing Ma Bridge (1997) in Hong Kong, the Skarnsundet Bridge (1991), or the Helgeland Bridge (1990) in Norway were built using this method.


The world's tallest piers

Structures with the tallest piers in the world are concentrated in Europe, specifically in France, Germany, and Austria. The first of these is the
Millau Viaduct The Millau Viaduct (, ) is a multispan cable-stayed bridge completed in 2004 across the Canyon, gorge valley of the Tarn (river), Tarn near (west of) Millau in the Aveyron department in the Occitania (administrative region), Occitanie Region, i ...
, which has the tallest pier in the world and two others in the top nine. The list of the fifteen tallest piers is as follows.


See also

*
Bridge A bridge is a structure built to Span (engineering), span a physical obstacle (such as a body of water, valley, road, or railway) without blocking the path underneath. It is constructed for the purpose of providing passage over the obstacle, whi ...
*
Bridge bearing In structural engineering, a bridge bearing is a component of a bridge which typically provides a resting surface between bridge piers and the bridge deck. The purpose of a Bearing (mechanical), bearing is to allow controlled movement and thereby ...


References


Bibliography

* * * * {{Cite book , last1=d’Aloïa , first1=Laetitia , title=Valorisation des bétons à hautes performances dans les piles et pylônes de grande hauteur des ouvrages d'art , last2=Légeron , first2=Frédéric , last3=Le Roy , first3=Robert , last4=Runfola , first4=Pierre , last5=Toutlemonde , first5=François , publisher=Laboratoire Central des Ponts et Chaussées , year=2003 , isbn=2-7208-3118-2 , language=FR Bridges Building Piers by country