HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a piecewise linear manifold (PL manifold) is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an
atlas An atlas is a collection of maps; it is typically a bundle of world map, maps of Earth or of a continent or region of Earth. Advances in astronomy have also resulted in atlases of the celestial sphere or of other planets. Atlases have traditio ...
, such that one can pass from
chart A chart (sometimes known as a graph) is a graphics, graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". A chart can repres ...
to chart in it by
piecewise linear function In mathematics, a piecewise linear or segmented function is a real-valued function of a real variable, whose graph is composed of straight-line segments. Definition A piecewise linear function is a function defined on a (possibly unbounded) ...
s. This is slightly stronger than the topological notion of a
triangulation In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Applications In surveying Specifically in surveying, triangulation involves only angle m ...
. An
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
of PL manifolds is called a PL homeomorphism.


Relation to other categories of manifolds

PL, or more precisely PDIFF, sits between DIFF (the category of
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
s) and TOP (the category of topological manifolds): it is categorically "better behaved" than DIFF — for example, the Generalized Poincaré conjecture is true in PL (with the possible exception of dimension 4, where it is equivalent to DIFF), but is false generally in DIFF — but is "worse behaved" than TOP, as elaborated in
surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while An ...
.


Smooth manifolds

Smooth manifolds have canonical PL structures — they are uniquely ''triangulizable,'' by Whitehead's theorem on
triangulation In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Applications In surveying Specifically in surveying, triangulation involves only angle m ...
— but PL manifolds do not always have smooth structures — they are not always ''smoothable.'' This relation can be elaborated by introducing the category PDIFF, which contains both DIFF and PL, and is equivalent to PL. One way in which PL is better behaved than DIFF is that one can take cones in PL, but not in DIFF — the cone point is acceptable in PL. A consequence is that the Generalized Poincaré conjecture is true in PL for dimensions greater than four — the proof is to take a homotopy sphere, remove two balls, apply the ''h''-cobordism theorem to conclude that this is a cylinder, and then attach cones to recover a sphere. This last step works in PL but not in DIFF, giving rise to exotic spheres.


Topological manifolds

Not every topological manifold admits a PL structure, and of those that do, the PL structure need not be unique—it can have infinitely many. This is elaborated at Hauptvermutung. The obstruction to placing a PL structure on a topological manifold is the Kirby–Siebenmann class. To be precise, the Kirby-Siebenmann class is the obstruction to placing a PL-structure on M x R and in dimensions n > 4, the KS class vanishes if and only if M has at least one PL-structure.


Real algebraic sets

An A-structure on a PL manifold is a structure which gives an inductive way of resolving the PL manifold to a smooth manifold. Compact PL manifolds admit A-structures. Compact PL manifolds are homeomorphic to real-algebraic sets. Put another way, A-category sits over the PL-category as a richer category with no obstruction to lifting, that is BA → BPL is a product fibration with BA = BPL × PL/A, and PL manifolds are real algebraic sets because A-manifolds are real algebraic sets.


Combinatorial manifolds and digital manifolds

* A combinatorial manifold is a kind of manifold which is discretization of a manifold. It usually means a piecewise linear manifold made by simplicial complexes. * A digital manifold is a special kind of combinatorial manifold which is defined in digital space. See digital topology.


See also

* Simplicial manifold


Notes


References

* * {{refend Structures on manifolds Geometric topology Manifolds