OPN1LW
   HOME

TheInfoList



OR:

OPN1LW is a gene on the X chromosome that encodes for long wave sensitive (LWS)
opsin Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become retinylidene proteins, but are usually still called opsins regardless. Most pro ...
, or red
cone In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines ...
photopigment Photopigments are unstable pigments that undergo a chemical change when they absorb light. The term is generally applied to the non-protein chromophore Moiety (chemistry), moiety of photosensitive chromoproteins, such as the pigments involved in ph ...
. The OPN1LW gene provides instructions for making an opsin pigment that is more sensitive to light in the yellow/orange part of the visible spectrum (long-wavelength light). The gene contains 6 exons with variability that induces shifts in the spectral range. OPN1LW is subject to homologous recombination with OPN1MW, as the two have very similar sequences. These recombinations can lead to various vision problems, such as red-green colourblindness and blue monochromacy. The protein encoded is a
G-protein coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large protein family, group of evoluti ...
with embedded 11-''cis''-retinal, whose light excitation causes a cis-trans conformational change that begins the process of chemical signalling to the brain. It is responsible for perception of visible light in the yellow-green range on the
visible spectrum The visible spectrum is the spectral band, band of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' (or simply light). The optica ...
(around 500-570nm).


Gene

OPN1LW produces red-sensitive opsin, while its counterparts, OPN1MW and OPN1SW, produce green-sensitive and blue-sensitive opsin respectively. OPN1LW and OPN1MW are on the X chromosome at position Xq28. They are in a tandem array, composed of a single OPN1LW gene which is followed by one or more OPN1MW genes. The locus control region (LCR
OPSIN-LCR
regulates expression of both genes, with only the OPN1LW gene and nearby adjacent OPN1MW genes being expressed and contributing to the colour vision phenotype. The LCR can not reach further than the first or second OPN1MW genes in the array. The slight difference in OPN1LW and OPN1MW absorption spectra is due to a handful of amino acid differences between the two highly similar genes.


Exons

OPN1LW and OPN1MW both have six exons.
Amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
dimorphisms on exon 5 at positions 277 and 285 are the most influential on the spectral differences observed between LWS and MWS pigments. There are 3 amino acid changes on exon 5 for OPN1LW and OPN1MW that contribute to the spectral shift seen between their respective opsin: OPN1MW has
phenylalanine Phenylalanine (symbol Phe or F) is an essential α-amino acid with the chemical formula, formula . It can be viewed as a benzyl group substituent, substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of ...
at positions 277 and 309, and
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group sid ...
at 285; OPN1LW have tyrosine at position 277 and 309, and
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form when dissolved in water), a carboxyl group (which is in the deprotonated −COO− ...
at position 285. The identity of the amino acids at these positions in exon 5 is what determines the gene as being M class or L class. On exon 3 at position 180 both genes can contain serine or alanine, but the presence of serine produces longer wavelength sensitivity, a consideration in the making of color-matching functions. Exon 4 has two spectral tuning positions: 230 for
isoleucine Isoleucine (symbol Ile or I) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
(longer peak wavelength) or threonine, and 233 for alanine (longer peak wavelength) or serine.


Homologous recombination

The arrangement of OPN1LW and OPN1MW, as well as the high similarity of the two genes, allows for frequent recombination between the two. Unequal recombination between female X chromosomes during
meiosis Meiosis () is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one c ...
is the main cause of the varying number of OPN1LW genes and OPN1MW genes among individuals, as well as being the cause of inherited colour vision deficiencies. Recombination events usually begin with misalignment of an OPN1LW gene with an OPN1MW gene and are followed by a certain type of crossover, which can result in many different gene abnormalities. Crossover in regions between OPN1LW and OPN1MW genes can produce chromosome products with extra OPN1LW or OPN1MW genes on one chromosome and reduced OPN1LW or OPN1MW genes on the other chromosome. If crossover occurs within the misaligned genes of OPN1LW and OPN1MW, then a new array will be produced on each chromosome consisting of only partial pieces of the two genes. This would create colour vision deficiencies if either chromosome were passed onto a male offspring.


Protein

The LWS type I opsin is a
G-protein coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large protein family, group of evoluti ...
(GPCR) protein with embedded 11-''cis'' retinal. It is a
transmembrane protein A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequently un ...
that has seven membrane domains, with the N-terminal being extracellular and the C-terminal being cytoplasmic. The LWS pigment has a maximum absorption of about 564nm, with an absorption range of around 500-570 nm. This opsin is known as the red opsin because it is the most sensitive to red light out of the three cone opsin types, not because its peak sensitivity is for red light. The peak absorption of 564nm actually falls in the yellow-green section of the visible light spectrum. When the protein comes in contact with light at a wavelength within its spectral range, the 11-''cis''-retinal
chromophore A chromophore is the part of a molecule responsible for its color. The word is derived . The color that is seen by our eyes is that of the light not Absorption (electromagnetic radiation), absorbed by the reflecting object within a certain wavele ...
becomes excited. The amount of energy in the light breaks the
pi bond In chemistry, pi bonds (π bonds) are covalent chemical bonds, in each of which two lobes of an orbital on one atom overlap with two lobes of an orbital on another atom, and in which this overlap occurs laterally. Each of these atomic orbital ...
that holds the chromophore in its cis configuration, which causes photoisomerization and a shift to the trans configuration. This shift is what begins the chemical reaction sequence responsible for getting the LWS cone signal to the brain.


Function

LWS opsin resides in disks of the outer segment of LWS cone cells, which mediate
photopic vision Photopic vision is the vision of the eye under well-lit conditions (luminance levels from 10 to 108  cd/m2). In humans and many other animals, photopic vision allows color perception, mediated by cone cells, and a significantly higher vis ...
along with MWS and SWS cones. Cone representation in the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
is substantially smaller than rod representation, with the majority of cones localizing in the fovea. When light within the LWS opsin spectral range reaches the retina, the 11-''cis''-retinal chromophore within the opsin protein becomes excited. This excitation causes a conformational change in the protein and triggers a series of chemical reactions. This reaction series passes from the LWS cone cells into horizontal cells, bipolar cells, amacrine cells, and finally ganglion cells before continuing to the brain via the
optic nerve In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual system, visual information from the retina to the brain. In humans, the optic nerve i ...
. Ganglion cells compile the signal from the LWS cones with all other cone signals that occurred in response to the light that was seen, and pass the overall signal into the optic nerve. The cones themselves do not process colour, it is the brain that decides what colour is being seen by the signal combination it receives from the ganglion cells.


Evolutionary history

Before humans evolved to be a trichromatic species, our vision was dichromatic and consisted of only the OPN1LW and OPN1SW genes. OPN1LW is thought to have undergone a duplication event that lead to an extra copy of the gene, which then evolved independently to become OPN1MW. OPN1LW and OPN1MW share almost all of their DNA sequences, whereas OPN1LW and OPN1SW share less than half, suggesting that the long wave and medium wave genes diverged from each other much more recently than with OPN1SW. The emergence of OPN1MW is directly associated with dichromacy evolving to trichromacy. The presence of both LSW and MSW opsins improves colour recognition time, memorization for coloured objects, and distance-dependent discrimination, giving trichromatic organisms an evolutionary advantage over dichromatic organisms when searching for nutrient-rich food sources. Cone pigments are the product of ancestral visual pigments, which consisted of only cone cells and no rod cells. These ancestral cones evolved to become the cone cells we know today (LWS, MWS, SWS), as well as rod cells.


Vision impairments


Red-green colour blindness

Many genetic changes of the OPN1LW and/or OPN1MW genes can cause red-green colourblindness. The majority of these genetic changes involve recombination events between the highly similar genes of OPN1LW and OPN1MW, which can result in deletion of one or both of these genes. Recombination can also result in the creation of many different OPN1LW and OPN1MW chimeras, which are genes that are similar to the original, but have different spectral properties. Single base-pair changes in OPN1LW can also inflict red-green colourblindness, but this is uncommon. The severity of vision loss in a red-green colourblind individual is influenced by the Ser180Ala polymorphism.


Protanopia

Protanopia Color blindness, color vision deficiency (CVD) or color deficiency is the decreased ability to see color or differences in color. The severity of color blindness ranges from mostly unnoticeable to full absence of color perception. Color bl ...
is caused by defective or total loss of the OPN1LW gene function, causing vision that is entirely dependent on OPN1MW and OPN1SW. Affected individuals have dichromatic vision, with the inability to fully differentiate between green, yellow, and red colour.


Protanomaly

Protanomaly occurs when a partially functional hybrid OPN1LW gene replaces the normal gene. Opsins made from these hybrid genes have abnormal spectral shifts that impair colour perception for colours in the OPN1LW spectrum. Protanomaly is one form of anomalous trichromacy.


Blue cone monochromacy

Blue cone monochromacy is caused by a loss of function of both OPN1LW and OPN1MW. This is commonly caused by mutations in the LCR, which would result in no expression of OPN1LW or OPN1MW. With this visual impairment, the individual can only see colours in the spectrum for SWS opsins, which fall in the blue range of light.


References


Further reading

* * * * * * * * * * * * * * * * * * {{G protein-coupled receptors Color vision