HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, especially in the area of
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
known as ring theory, an Ore extension, named after Øystein Ore, is a special type of a ring extension whose properties are relatively well understood. Elements of a Ore extension are called Ore polynomials. Ore extensions appear in several natural contexts, including skew and differential
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s, group algebras of polycyclic groups,
universal enveloping algebra In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representa ...
s of
solvable Lie algebra In mathematics, a Lie algebra \mathfrak is solvable if its derived series terminates in the zero subalgebra. The ''derived Lie algebra'' of the Lie algebra \mathfrak is the subalgebra of \mathfrak, denoted : mathfrak,\mathfrak/math> that consist ...
s, and
coordinate ring In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
s of quantum groups.


Definition

Suppose that ''R'' is a (not necessarily
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
)
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, \sigma \colon R \to R is a
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
, and \delta\colon R\to R is a ''σ''-derivation of ''R'', which means that \delta is a
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s satisfying : \delta(r_1 r_2) = \sigma(r_1)\delta(r_2)+\delta(r_1)r_2. Then the Ore extension R ;\sigma,\delta/math>, also called a skew polynomial ring, is the
noncommutative ring In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not ...
obtained by giving the ring of polynomials R /math> a new multiplication, subject to the identity : x r = \sigma(r)x + \delta(r). If ''δ'' = 0 (i.e., is the zero map) then the Ore extension is denoted ''R'' 'x''; ''σ'' If ''σ'' = 1 (i.e., the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
) then the Ore extension is denoted ''R'' 'x'', ''δ'' and is called a differential polynomial ring.


Examples

The
Weyl algebra In abstract algebra, the Weyl algebras are abstracted from the ring of differential operators with polynomial coefficients. They are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics. ...
s are Ore extensions, with ''R'' any commutative
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
, ''σ'' the identity ring
endomorphism In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a g ...
, and ''δ'' the polynomial derivative.
Ore algebra In computer algebra, an Ore algebra is a special kind of iterated Ore extension that can be used to represent linear functional operators, including linear differential and/or recurrence operators. The concept is named after Øystein Ore. Def ...
s are a class of iterated Ore extensions under suitable constraints that permit to develop a noncommutative extension of the theory of Gröbner bases.


Properties

* An Ore extension of a domain is a domain. * An Ore extension of a
skew field In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative ...
is a non-commutative
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
. * If ''σ'' is an
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
and ''R'' is a left
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
then the Ore extension ''R'' 'λ''; ''σ'', ''δ'' is also left Noetherian.


Elements

An element ''f'' of an Ore ring ''R'' is called * twosided (or invariant ), if ''R·f = f·R'', and * central, if ''g·f = f·g'' for all ''g'' in ''R''.


Further reading

* * * Azeddine Ouarit (1992) Extensions de ore d'anneaux noetheriens á i.p, Comm. Algebra, 20 No 6,1819-1837. https://zbmath.org/?q=an:0754.16014 * Azeddine Ouarit (1994) A remark on the Jacobson property of PI Ore extensions. (Une remarque sur la propriété de Jacobson des extensions de Ore a I.P.) (French) Zbl 0819.16024. Arch. Math. 63, No.2, 136-139 (1994). https://zbmath.org/?q=an:00687054 *


References

{{Reflist Ring theory