HOME

TheInfoList



OR:

In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation: : ^, x^i \theta^ \,\! which means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis. In fact, this leads to an uncertainty relation for the coordinates analogous to the Heisenberg uncertainty principle. Various lower limits have been claimed for the noncommutative scale, (i.e. how accurately positions can be measured) but there is currently no experimental evidence in favour of such a theory or grounds for ruling them out. One of the novel features of noncommutative field theories is the UV/IR mixing phenomenon in which the physics at high energies affects the physics at low energies which does not occur in quantum field theories in which the coordinates commute. Other features include violation of
Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation In physics, the Lorentz transformations are a six-parameter famil ...
due to the preferred direction of noncommutativity. Relativistic invariance can however be retained in the sense of twisted Poincaré invariance of the theory. The causality condition is modified from that of the commutative theories.


History and motivation

Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent serie ...
was the first to suggest extending noncommutativity to the coordinates as a possible way of removing the infinite quantities appearing in field theories before the renormalization procedure was developed and had gained acceptance. The first paper on the subject was published in 1947 by
Hartland Snyder Hartland Sweet Snyder (1913, Salt Lake City – 1962) was an American physicist who along with Robert Oppenheimer calculated the gravitational collapse of a pressure-free sphere of dust particles as described by Einstein's general relativity, and f ...
. The success of the renormalization method resulted in little attention being paid to the subject for some time. In the 1980s, mathematicians, most notably
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vande ...
, developed noncommutative geometry. Among other things, this work generalized the notion of differential structure to a noncommutative setting. This led to an operator algebraic description of noncommutative space-times, with the problem that it classically corresponds to a manifold with positively defined
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
, so that there is no description of (noncommutative) causality in this approach. However it also led to the development of a Yang–Mills theory on a noncommutative torus. The particle physics community became interested in the noncommutative approach because of a paper by
Nathan Seiberg Nathan "Nati" Seiberg (; born September 22, 1956) is an Israeli American theoretical physicist who works on quantum field theory and string theory. He is currently a professor at the Institute for Advanced Study in Princeton, New Jersey, United ...
and
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, ...
. They argued in the context of string theory that the coordinate functions of the endpoints of open strings constrained to a D-brane in the presence of a constant Neveu–Schwarz B-field—equivalent to a constant magnetic field on the brane—would satisfy the noncommutative algebra set out above. The implication is that a quantum field theory on noncommutative spacetime can be interpreted as a low energy limit of the theory of open strings. Two papers, one by Sergio Doplicher, Klaus Fredenhagen and John Roberts and the other by D. V. Ahluwalia,D. V. Ahluwalia (1993)
Quantum Measurement, Gravitation, and Locality
" ``Phys. Lett. B339:301-303,1994. A look at preprint dates shows that this work takes priority over Doplicher et al. publication by eight months
set out another motivation for the possible noncommutativity of space-time. The arguments go as follows: According to general relativity, when the energy density grows sufficiently large, a
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can defo ...
is formed. On the other hand, according to the Heisenberg uncertainty principle, a measurement of a space-time separation causes an uncertainty in momentum inversely proportional to the extent of the separation. Thus energy whose scale corresponds to the uncertainty in momentum is localized in the system within a region corresponding to the uncertainty in position. When the separation is small enough, the Schwarzschild radius of the system is reached and a
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can defo ...
is formed, which prevents any information from escaping the system. Thus there is a lower bound for the measurement of length. A sufficient condition for preventing gravitational collapse can be expressed as an uncertainty relation for the coordinates. This relation can in turn be derived from a
commutation Commute, commutation or commutative may refer to: * Commuting, the process of travelling between a place of residence and a place of work Mathematics * Commutative property, a property of a mathematical operation whose result is insensitive to th ...
relation for the coordinates. It is worth stressing that, differently from other approaches, in particular those relying upon Connes' ideas, here the noncommutative spacetime is a proper spacetime, i.e. it extends the idea of a four-dimensional pseudo-Riemannian manifold. On the other hand, differently from Connes' noncommutative geometry, the proposed model turns out to be coordinates dependent from scratch. In Doplicher Fredenhagen Roberts' paper noncommutativity of coordinates concerns all four spacetime coordinates and not only spatial ones.


See also

* Moyal product * Noncommutative geometry *
Noncommutative standard model In theoretical particle physics, the non-commutative Standard Model (best known as Spectral Standard Model ), is a model based on noncommutative geometry that unifies a modified form of general relativity with the Standard Model (extended with ...
* Wigner–Weyl transform


Footnotes


Further reading

* * M.R. Douglas and N. A. Nekrasov (2001)
Noncommutative field theory
" Rev. Mod. Phys. 73: 977–1029. * Szabo, R. (2003)
Quantum Field Theory on Noncommutative Spaces
" ''Physics Reports'' 378: 207-99. An expository article on noncommutative quantum field theories.
Noncommutative quantum field theory, see statistics
on arxiv.org * V. Moretti (2003),
Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes
" Rev. Math. Phys. 15: 1171-1218. An expository paper (also) on the difficulties to extend non-commutative geometry to the Lorentzian case describing causality {{DEFAULTSORT:Noncommutative Quantum Field Theory Noncommutative geometry Quantum field theory Mathematical quantization