HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, specifically
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, a degenerate bilinear form on a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'' is a
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linea ...
such that the map from ''V'' to ''V'' (the
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by cons ...
of ''V'') given by is not an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. An equivalent definition when ''V'' is
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
is that it has a non-trivial kernel: there exist some non-zero ''x'' in ''V'' such that :f(x,y)=0\, for all \,y \in V.


Nondegenerate forms

A nondegenerate or nonsingular form is a
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linea ...
that is not degenerate, meaning that v \mapsto (x \mapsto f(x,v)) is an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
, or equivalently in finite dimensions,
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
:f(x,y)=0 for all y \in V implies that x = 0.


Using the determinant

If ''V'' is finite-dimensional then, relative to some basis for ''V'', a bilinear form is degenerate if and only if the
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the associated
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
is zero – if and only if the matrix is ''
singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singula ...
'', and accordingly degenerate forms are also called singular forms. Likewise, a nondegenerate form is one for which the associated matrix is
non-singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singular ...
, and accordingly nondegenerate forms are also referred to as non-singular forms. These statements are independent of the chosen basis.


Related notions

If for a
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong t ...
''Q'' there is a non-zero vector ''v'' ∈ ''V'' such that ''Q''(''v'') = 0, then ''Q'' is an
isotropic quadratic form In mathematics, a quadratic form over a field ''F'' is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise it is a definite quadratic form. More explicitly, if ''q'' is a quadratic form on a vector sp ...
. If ''Q'' has the same sign for all non-zero vectors, it is a
definite quadratic form In mathematics, a definite quadratic form is a quadratic form over some real vector space that has the same sign (always positive or always negative) for every non-zero vector of . According to that sign, the quadratic form is called positive-def ...
or an anisotropic quadratic form. There is the closely related notion of a unimodular form and a
perfect pairing In mathematics, a pairing is an ''R''-bilinear map from the Cartesian product of two ''R''- modules, where the underlying ring ''R'' is commutative. Definition Let ''R'' be a commutative ring with unit, and let ''M'', ''N'' and ''L'' be ''R' ...
; these agree over
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
but not over general rings.


Examples

The study of real, quadratic algebras shows the distinction between types of quadratic forms. The product ''zz''* is a quadratic form for each of the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s,
split-complex number In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit satisfying j^2=1, where j \neq \pm 1. A split-complex number has two real number components and , and is written z=x+y ...
s, and
dual number In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form , where and are real numbers, and is a symbol taken to satisfy \varepsilon^2 = 0 with \varepsilon\neq 0. D ...
s. For ''z'' = ''x'' + ε ''y'', the dual number form is ''x''2 which is a degenerate quadratic form. The split-complex case is an isotropic form, and the complex case is a definite form. The most important examples of nondegenerate forms are
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
s and
symplectic form In mathematics, a symplectic vector space is a vector space V over a field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form. A symplectic bilinear form is a mapping \omega : V \times V \to F that is ; Bilinear: ...
s.
Symmetric Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map V \to V^* be an isomorphism, not positivity. For example, a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
with an inner product structure on its
tangent space In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ...
s is a
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
, while relaxing this to a symmetric nondegenerate form yields a
pseudo-Riemannian manifold In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
.


Infinite dimensions

Note that in an infinite-dimensional space, we can have a bilinear form ƒ for which v \mapsto (x \mapsto f(x,v)) is
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
but not
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
. For example, on the space of
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s on a closed bounded interval, the form : f(\phi,\psi) = \int\psi(x)\phi(x) \,dx is not surjective: for instance, the Dirac delta functional is in the dual space but not of the required form. On the other hand, this bilinear form satisfies :f(\phi,\psi)=0 for all \phi implies that \psi=0.\, In such a case where ƒ satisfies injectivity (but not necessarily surjectivity), ƒ is said to be ''weakly nondegenerate''.


Terminology

If ''f'' vanishes identically on all vectors it is said to be totally degenerate. Given any bilinear form ''f'' on ''V'' the set of vectors :\ forms a totally degenerate subspace of ''V''. The map ''f'' is nondegenerate if and only if this subspace is trivial. Geometrically, an isotropic line of the quadratic form corresponds to a point of the associated quadric hypersurface in
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
. Such a line is additionally isotropic for the bilinear form if and only if the corresponding point is a singularity. Hence, over an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra ...
,
Hilbert's Nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ge ...
guarantees that the quadratic form always has isotropic lines, while the bilinear form has them if and only if the surface is singular.


See also

* * *


References

{{Topological vector spaces Bilinear forms Functional analysis